Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection
- URL: http://arxiv.org/abs/2409.11223v1
- Date: Tue, 17 Sep 2024 14:17:52 GMT
- Title: Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection
- Authors: Yuta Kaneko, Abu Saleh Musa Miah, Najmul Hassan, Hyoun-Sup Lee, Si-Woong Jang, Jungpil Shin,
- Abstract summary: This system uses three feature streams: RGB video, optical flow, and audio signals, where each stream extracts complementary spatial and temporal features.
The system significantly improves anomaly detection accuracy and robustness across three datasets.
- Score: 1.9223495770071632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly supervised video anomaly detection (WS-VAD) is a crucial area in computer vision for developing intelligent surveillance systems. This system uses three feature streams: RGB video, optical flow, and audio signals, where each stream extracts complementary spatial and temporal features using an enhanced attention module to improve detection accuracy and robustness. In the first stream, we employed an attention-based, multi-stage feature enhancement approach to improve spatial and temporal features from the RGB video where the first stage consists of a ViT-based CLIP module, with top-k features concatenated in parallel with I3D and Temporal Contextual Aggregation (TCA) based rich spatiotemporal features. The second stage effectively captures temporal dependencies using the Uncertainty-Regulated Dual Memory Units (UR-DMU) model, which learns representations of normal and abnormal data simultaneously, and the third stage is employed to select the most relevant spatiotemporal features. The second stream extracted enhanced attention-based spatiotemporal features from the flow data modality-based feature by taking advantage of the integration of the deep learning and attention module. The audio stream captures auditory cues using an attention module integrated with the VGGish model, aiming to detect anomalies based on sound patterns. These streams enrich the model by incorporating motion and audio signals often indicative of abnormal events undetectable through visual analysis alone. The concatenation of the multimodal fusion leverages the strengths of each modality, resulting in a comprehensive feature set that significantly improves anomaly detection accuracy and robustness across three datasets. The extensive experiment and high performance with the three benchmark datasets proved the effectiveness of the proposed system over the existing state-of-the-art system.
Related papers
- TSdetector: Temporal-Spatial Self-correction Collaborative Learning for Colonoscopy Video Detection [19.00902297385955]
We propose a novel Temporal-Spatial self-correction detector (TSdetector), which integrates temporal-level consistency learning and spatial-level reliability learning to detect objects continuously.
The experimental results on three publicly available polyp video dataset show that TSdetector achieves the highest polyp detection rate and outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-09-30T06:19:29Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Multi-scale Spatial-temporal Interaction Network for Video Anomaly
Detection [3.113134714967787]
Video Anomaly Detection (VAD) is an essential yet challenging task in signal processing.
We propose a Multi-scale Spatial-Temporal Interaction Network (MSTI-Net) for VAD.
arXiv Detail & Related papers (2023-06-17T02:40:29Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Slow-Fast Visual Tempo Learning for Video-based Action Recognition [78.3820439082979]
Action visual tempo characterizes the dynamics and the temporal scale of an action.
Previous methods capture the visual tempo either by sampling raw videos with multiple rates, or by hierarchically sampling backbone features.
We propose a Temporal Correlation Module (TCM) to extract action visual tempo from low-level backbone features at single-layer remarkably.
arXiv Detail & Related papers (2022-02-24T14:20:04Z) - Spatio-Temporal Self-Attention Network for Video Saliency Prediction [13.873682190242365]
3D convolutional neural networks have achieved promising results for video tasks in computer vision.
We propose a novel Spatio-Temporal Self-Temporal Self-Attention 3 Network (STSANet) for video saliency prediction.
arXiv Detail & Related papers (2021-08-24T12:52:47Z) - DCASE 2021 Task 3: Spectrotemporally-aligned Features for Polyphonic
Sound Event Localization and Detection [16.18806719313959]
We propose a novel feature called spatial cue-augmented log-spectrogram (SALSA) with exact time-frequency mapping between the signal power and the source direction-of-arrival.
We show that the deep learning-based models trained on this new feature outperformed the DCASE challenge baseline by a large margin.
arXiv Detail & Related papers (2021-06-29T09:18:30Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.