The Unseen AI Disruptions for Power Grids: LLM-Induced Transients
- URL: http://arxiv.org/abs/2409.11416v1
- Date: Mon, 9 Sep 2024 05:22:01 GMT
- Title: The Unseen AI Disruptions for Power Grids: LLM-Induced Transients
- Authors: Yuzhuo Li, Mariam Mughees, Yize Chen, Yunwei Ryan Li,
- Abstract summary: AI infrastructure features ultra-low inertia, sharp power surge and dip, and a significant peak-idle power ratio.
These never-seen-before characteristics make AI a very unique load and pose threats to the power grid reliability and resilience.
This paper examines the scale of AI power consumption, analyzes AI transient behaviour in various scenarios, develops high-level mathematical models to depict AI workload behaviour and discusses the multifaceted challenges and opportunities they potentially bring to existing power grids.
- Score: 0.5749787074942511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs of large language models (LLMs) have exhibited superior capability across major industries and stimulated multi-hundred-billion-dollar investment in AI-centric data centers in the next 3-5 years. This, in turn, bring the increasing concerns on sustainability and AI-related energy usage. However, there is a largely overlooked issue as challenging and critical as AI model and infrastructure efficiency: the disruptive dynamic power consumption behaviour. With fast, transient dynamics, AI infrastructure features ultra-low inertia, sharp power surge and dip, and a significant peak-idle power ratio. The power scale covers from several hundred watts to megawatts, even to gigawatts. These never-seen-before characteristics make AI a very unique load and pose threats to the power grid reliability and resilience. To reveal this hidden problem, this paper examines the scale of AI power consumption, analyzes AI transient behaviour in various scenarios, develops high-level mathematical models to depict AI workload behaviour and discusses the multifaceted challenges and opportunities they potentially bring to existing power grids. Observing the rapidly evolving machine learning (ML) and AI technologies, this work emphasizes the critical need for interdisciplinary approaches to ensure reliable and sustainable AI infrastructure development, and provides a starting point for researchers and practitioners to tackle such challenges.
Related papers
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Reducing the Barriers to Entry for Foundation Model Training [0.28756346738878485]
The world has recently witnessed an unprecedented acceleration in demands for Machine Learning and Artificial Intelligence applications.
This spike in demand has imposed tremendous strain on the underlying technology stack in supply chain.
We propose a fundamental change in the AI training infrastructure throughout the technology ecosystem.
arXiv Detail & Related papers (2024-04-12T20:58:25Z) - Toward Cross-Layer Energy Optimizations in AI Systems [4.871463967255196]
Energy efficiency is likely to become the gating factor toward adoption of artificial intelligence.
With the pervasive usage of artificial intelligence (AI) and machine learning (ML) tools and techniques, their energy efficiency is likely to become the gating factor toward adoption.
This is because generative AI (GenAI) models are massive energy hogs.
Inference consumes even more energy, because a model trained once serve millions.
arXiv Detail & Related papers (2024-04-10T01:35:17Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.