Partially Observable Contextual Bandits with Linear Payoffs
- URL: http://arxiv.org/abs/2409.11521v1
- Date: Tue, 17 Sep 2024 19:47:04 GMT
- Title: Partially Observable Contextual Bandits with Linear Payoffs
- Authors: Sihan Zeng, Sujay Bhatt, Alec Koppel, Sumitra Ganesh,
- Abstract summary: We consider a new bandit setting with partially observable, correlated contexts and linear payoffs.
We propose an algorithmic pipeline named EMKF-Bandit, which integrates system identification, filtering, and classic contextual bandit algorithms.
- Score: 18.593061465167363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard contextual bandit framework assumes fully observable and actionable contexts. In this work, we consider a new bandit setting with partially observable, correlated contexts and linear payoffs, motivated by the applications in finance where decision making is based on market information that typically displays temporal correlation and is not fully observed. We make the following contributions marrying ideas from statistical signal processing with bandits: (i) We propose an algorithmic pipeline named EMKF-Bandit, which integrates system identification, filtering, and classic contextual bandit algorithms into an iterative method alternating between latent parameter estimation and decision making. (ii) We analyze EMKF-Bandit when we select Thompson sampling as the bandit algorithm and show that it incurs a sub-linear regret under conditions on filtering. (iii) We conduct numerical simulations that demonstrate the benefits and practical applicability of the proposed pipeline.
Related papers
- Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
We propose a Thompson sampling algorithm, named FGTS.CDB, for linear contextual dueling bandits.
At the core of our algorithm is a new Feel-Good exploration term specifically tailored for dueling bandits.
Our algorithm achieves nearly minimax-optimal regret, i.e., $tildemathcalO(dsqrt T)$, where $d$ is the model dimension and $T$ is the time horizon.
arXiv Detail & Related papers (2024-04-09T04:45:18Z) - Thompson Sampling for Stochastic Bandits with Noisy Contexts: An Information-Theoretic Regret Analysis [4.297070083645049]
We investigate a contextual linear bandit problem where the agent observes a noisy, corrupted version of the true context.
Our objective is to design an action policy that can approximate" that of an oracle.
arXiv Detail & Related papers (2024-01-21T18:57:38Z) - Online learning in bandits with predicted context [8.257280652461159]
We consider the contextual bandit problem where at each time, the agent only has access to a noisy version of the context.
This setting is motivated by a wide range of applications where the true context for decision-making is unobserved.
We propose the first online algorithm in this setting with sublinear regret guarantees under mild conditions.
arXiv Detail & Related papers (2023-07-26T02:33:54Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
We propose a novel $K$-nearest neighbor reparametric procedure for estimating the performance of a policy from historical data.
Our analysis allows for the sampling of entire episodes, as is common practice in most applications.
Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization, and does not explicitly assume a parametric model for the environment's dynamics.
arXiv Detail & Related papers (2023-06-07T23:55:12Z) - Linear Partial Monitoring for Sequential Decision-Making: Algorithms,
Regret Bounds and Applications [70.67112733968654]
Partial monitoring is an expressive framework for sequential decision-making.
We present a simple and unified analysis of partial monitoring, and further extend the model to the contextual and kernelized setting.
arXiv Detail & Related papers (2023-02-07T18:58:25Z) - Contextual bandits with concave rewards, and an application to fair
ranking [108.48223948875685]
We present the first algorithm with provably vanishing regret for Contextual Bandits with Concave Rewards (CBCR)
We derive a novel reduction from the CBCR regret to the regret of a scalar-reward problem.
Motivated by fairness in recommendation, we describe a special case of CBCR with rankings and fairness-aware objectives.
arXiv Detail & Related papers (2022-10-18T16:11:55Z) - Analysis of Thompson Sampling for Partially Observable Contextual
Multi-Armed Bandits [1.8275108630751844]
We propose a Thompson Sampling algorithm for partially observable contextual multi-armed bandits.
We show that the regret of the presented policy scales logarithmically with time and the number of arms, and linearly with the dimension.
arXiv Detail & Related papers (2021-10-23T08:51:49Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Markov Decision Process modeled with Bandits for Sequential Decision
Making in Linear-flow [73.1896399783641]
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence.
We propose to formulate the problem as an MDP with Bandits where Bandits are employed to model the transition probability matrix.
We observe the proposed MDP with Bandits algorithm outperforms Q-learning with $epsilon$-greedy and decreasing $epsilon$, independent Bandits, and interaction Bandits.
arXiv Detail & Related papers (2021-07-01T03:54:36Z) - Output-Weighted Sampling for Multi-Armed Bandits with Extreme Payoffs [11.1546439770774]
We present a new type of acquisition functions for online decision making in bandit problems with extreme payoffs.
We formulate a novel type of upper confidence bound (UCB) acquisition function that guides exploration towards the bandits that are deemed most relevant.
arXiv Detail & Related papers (2021-02-19T18:36:03Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
We consider a popular risk measure in quantitative finance known as the Conditional Value at Risk (CVaR)
We explore the performance of a Thompson Sampling-based algorithm CVaR-TS under this risk measure.
arXiv Detail & Related papers (2020-11-16T15:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.