Outlier Detection with Cluster Catch Digraphs
- URL: http://arxiv.org/abs/2409.11596v2
- Date: Wed, 9 Oct 2024 04:38:36 GMT
- Title: Outlier Detection with Cluster Catch Digraphs
- Authors: Rui Shi, Nedret Billor, Elvan Ceyhan,
- Abstract summary: This paper introduces a novel family of outlier detection algorithms based on Cluster Catch Digraphs (CCDs)
We propose the Uniformity-Based CCD with Mutual Catch Graph (U-MCCD), the Uniformity- and Neighbor-Based CCD with Mutual Catch Graph (UN-MCCD), and their shape-adaptive variants (SU-MCCD and SUN-MCCD)
Our results indicate that these novel algorithms offer substantial advancements in the accuracy and adaptability of outlier detection.
- Score: 1.6440434996206625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel family of outlier detection algorithms based on Cluster Catch Digraphs (CCDs), specifically tailored to address the challenges of high dimensionality and varying cluster shapes, which deteriorate the performance of most traditional outlier detection methods. We propose the Uniformity-Based CCD with Mutual Catch Graph (U-MCCD), the Uniformity- and Neighbor-Based CCD with Mutual Catch Graph (UN-MCCD), and their shape-adaptive variants (SU-MCCD and SUN-MCCD), which are designed to detect outliers in data sets with arbitrary cluster shapes and high dimensions. We present the advantages and shortcomings of these algorithms and provide the motivation or need to define each particular algorithm. Through comprehensive Monte Carlo simulations, we assess their performance and demonstrate the robustness and effectiveness of our algorithms across various settings and contamination levels. We also illustrate the use of our algorithms on various real-life data sets. The U-MCCD algorithm efficiently identifies outliers while maintaining high true negative rates, and the SU-MCCD algorithm shows substantial improvement in handling non-uniform clusters. Additionally, the UN-MCCD and SUN-MCCD algorithms address the limitations of existing methods in high-dimensional spaces by utilizing Nearest Neighbor Distances (NND) for clustering and outlier detection. Our results indicate that these novel algorithms offer substantial advancements in the accuracy and adaptability of outlier detection, providing a valuable tool for various real-world applications. Keyword: Outlier detection, Graph-based clustering, Cluster catch digraphs, $k$-nearest-neighborhood, Mutual catch graphs, Nearest neighbor distance.
Related papers
- K-GBS3FCM -- KNN Graph-Based Safe Semi-Supervised Fuzzy C-Means [0.0]
This paper introduces the KNN graph-based safety-aware semi-supervised fuzzy c-means algorithm (K-GBS3FCM)
It dynamically assesses neighborhood relationships between labeled and unlabeled data using the K-Nearest Neighbors (KNN) algorithm.
It is proposed a mechanism that adjusts the influence of labeled data on unlabeled ones through regularization parameters and the average safety degree.
arXiv Detail & Related papers (2024-11-22T04:48:58Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
We present FLASC, an algorithm that detects branches within clusters to identify subpopulations.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
We show that both variants scale similarly to HDBSCAN* in terms of computational cost and provide stable outputs.
arXiv Detail & Related papers (2023-11-27T14:55:16Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - SSDBCODI: Semi-Supervised Density-Based Clustering with Outliers
Detection Integrated [1.8444322599555096]
Clustering analysis is one of the critical tasks in machine learning.
Due to the fact that the performance of clustering clustering can be significantly eroded by outliers, algorithms try to incorporate the process of outlier detection.
We have proposed SSDBCODI, a semi-supervised detection element.
arXiv Detail & Related papers (2022-08-10T21:06:38Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z) - A semi-supervised sparse K-Means algorithm [3.04585143845864]
An unsupervised sparse clustering method can be employed in order to detect the subgroup of features necessary for clustering.
A semi-supervised method can use the labelled data to create constraints and enhance the clustering solution.
We show that the algorithm maintains the high performance of other semi-supervised algorithms and in addition preserves the ability to identify informative from uninformative features.
arXiv Detail & Related papers (2020-03-16T02:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.