Inside Out or Not: Privacy Implications of Emotional Disclosure
- URL: http://arxiv.org/abs/2409.11805v1
- Date: Wed, 18 Sep 2024 08:42:45 GMT
- Title: Inside Out or Not: Privacy Implications of Emotional Disclosure
- Authors: Elham Naghizade, Kaixin Ji, Benjamin Tag, Flora Salim,
- Abstract summary: We investigate the role of emotions in driving individuals' information sharing behaviour, particularly in relation to urban locations and social ties.
We adopt a novel methodology that integrates location and time, emotion, and personal information sharing behaviour.
Our findings reveal that self-reported emotions influence personal information-sharing behaviour with distant social groups, while neutral emotions lead individuals to share less precise information with close social circles.
- Score: 6.667345087444936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy is dynamic, sensitive, and contextual, much like our emotions. Previous studies have explored the interplay between privacy and context, privacy and emotion, and emotion and context. However, there remains a significant gap in understanding the interplay of these aspects simultaneously. In this paper, we present a preliminary study investigating the role of emotions in driving individuals' information sharing behaviour, particularly in relation to urban locations and social ties. We adopt a novel methodology that integrates context (location and time), emotion, and personal information sharing behaviour, providing a comprehensive analysis of how contextual emotions affect privacy. The emotions are assessed with both self-reporting and electrodermal activity (EDA). Our findings reveal that self-reported emotions influence personal information-sharing behaviour with distant social groups, while neutral emotions lead individuals to share less precise information with close social circles, a pattern is potentially detectable with wrist-worn EDA. Our study helps lay the foundation for personalised emotion-aware strategies to mitigate oversharing risks and enhance user privacy in the digital age.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.
We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.
Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.
Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Digital Nudges Using Emotion Regulation to Reduce Online Disinformation Sharing [0.0]
This study aimed to evaluate whether digital nudges that encourage deliberation by drawing attention to emotional information can reduce sharing driven by strong anger associated with online disinformation.
Digital nudges were designed to display emotional information about disinformation and emotion regulation messages.
Results showed that all digital nudges significantly reduced the sharing of disinformation, with distraction nudges being the most effective.
arXiv Detail & Related papers (2025-03-31T13:01:05Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
In this study, we showcase how integrating eye-tracking data, temporal dynamics, and personality traits can substantially enhance the detection of both perceived and felt emotions.
Our findings inform the design of future affective computing and human-agent systems.
arXiv Detail & Related papers (2025-03-18T13:15:32Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Emotion in Cognitive Architecture: Emergent Properties from Interactions
with Human Emotion [0.0]
This document presents endeavors to represent emotion in a computational cognitive architecture.
The advantage of the cognitive human-agent interaction approach is in representing human internal states and processes.
arXiv Detail & Related papers (2022-12-28T23:50:27Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - User Perception of Privacy with Ubiquitous Devices [5.33024001730262]
This study aims to explore and discover various concerns related to perception of privacy in this era of ubiquitous technologies.
Key themes like attitude towards privacy in public and private spaces, privacy awareness, consent seeking, dilemmas/confusions related to various technologies, impact of attitude and beliefs on individuals actions regarding how to protect oneself from invasion of privacy in both public and private spaces.
arXiv Detail & Related papers (2021-07-23T05:01:44Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
We propose a framework that infers latent individual aspects from brief contents.
We also present a novel ensemble classifier equipped with dynamic dropout convnets to extract emotions from textual context.
Our proposed model can achieve a higher performance in recognizing emotion from noisy contents.
arXiv Detail & Related papers (2021-06-03T09:17:34Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
We provide a NICO robot with the ability to learn the associations between a perceived auditory stimulus and an emotional expression.
NICO is able to do this for both individual subjects and specific stimuli, with the aid of an emotion-driven dialogue system.
The robot is then able to use this information to determine a subject's enjoyment of perceived auditory stimuli in a real HRI scenario.
arXiv Detail & Related papers (2021-03-05T20:55:48Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z) - Learning Emotional-Blinded Face Representations [77.7653702071127]
We propose two face representations that are blind to facial expressions associated to emotional responses.
This work is motivated by new international regulations for personal data protection.
arXiv Detail & Related papers (2020-09-18T09:24:10Z) - K-EmoCon, a multimodal sensor dataset for continuous emotion recognition
in naturalistic conversations [19.350031493515562]
K-EmoCon is a novel dataset with comprehensive annotations of continuous emotions during naturalistic conversations.
The dataset contains multimodal measurements, including audiovisual recordings, EEG, and peripheral physiological signals.
It includes emotion annotations from all three available perspectives: self, debate partner, and external observers.
arXiv Detail & Related papers (2020-05-08T15:51:12Z) - Context Based Emotion Recognition using EMOTIC Dataset [22.631542327834595]
We present EMOTIC, a dataset of images of people annotated with their apparent emotion.
Using the EMOTIC dataset we train different CNN models for emotion recognition.
Our results show how scene context provides important information to automatically recognize emotional states.
arXiv Detail & Related papers (2020-03-30T12:38:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.