End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation
- URL: http://arxiv.org/abs/2409.11819v1
- Date: Wed, 18 Sep 2024 09:11:31 GMT
- Title: End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation
- Authors: Thomas Pöllabauer, Jiayin Li, Volker Knauthe, Sarah Berkei, Arjan Kuijper,
- Abstract summary: State-of-the-art 6D object pose estimators directly predict an object pose given an object observation.
We reformulate the state-of-the-art algorithm GDRNPP and introduce EPRO-GDR.
Our solution shows that predicting a pose distribution instead of a single pose can improve state-of-the-art single-view pose estimation.
- Score: 5.21401636701889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 6D object pose estimation is the problem of identifying the position and orientation of an object relative to a chosen coordinate system, which is a core technology for modern XR applications. State-of-the-art 6D object pose estimators directly predict an object pose given an object observation. Due to the ill-posed nature of the pose estimation problem, where multiple different poses can correspond to a single observation, generating additional plausible estimates per observation can be valuable. To address this, we reformulate the state-of-the-art algorithm GDRNPP and introduce EPRO-GDR (End-to-End Probabilistic Geometry-Guided Regression). Instead of predicting a single pose per detection, we estimate a probability density distribution of the pose. Using the evaluation procedure defined by the BOP (Benchmark for 6D Object Pose Estimation) Challenge, we test our approach on four of its core datasets and demonstrate superior quantitative results for EPRO-GDR on LM-O, YCB-V, and ITODD. Our probabilistic solution shows that predicting a pose distribution instead of a single pose can improve state-of-the-art single-view pose estimation while providing the additional benefit of being able to sample multiple meaningful pose candidates.
Related papers
- YOLOPose V2: Understanding and Improving Transformer-based 6D Pose
Estimation [36.067414358144816]
YOLOPose is a Transformer-based multi-object 6D pose estimation method.
We employ a learnable orientation estimation module to predict the orientation from the keypoints.
Our method is suitable for real-time applications and achieves results comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T12:53:54Z) - Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot,
Generalizable Approach using RGB Images [60.0898989456276]
We present a new framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images.
To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a self-supervised pre-trained ViT to learn robust feature representations.
Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting.
arXiv Detail & Related papers (2023-06-13T07:45:42Z) - POPE: 6-DoF Promptable Pose Estimation of Any Object, in Any Scene, with
One Reference [72.32413378065053]
We propose a general paradigm for object pose estimation, called Promptable Object Pose Estimation (POPE)
POPE enables zero-shot 6DoF object pose estimation for any target object in any scene, while only a single reference is adopted as the support view.
Comprehensive experimental results demonstrate that POPE exhibits unrivaled robust performance in zero-shot settings.
arXiv Detail & Related papers (2023-05-25T05:19:17Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - Geo6D: Geometric Constraints Learning for 6D Pose Estimation [21.080439293774464]
We propose a novel geometric constraints learning approach called Geo6D for direct regression 6D pose estimation methods.
We show that when equipped with Geo6D, the direct 6D methods achieve state-of-the-art performance on multiple datasets.
arXiv Detail & Related papers (2022-10-20T02:00:58Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.