Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling
- URL: http://arxiv.org/abs/2409.11933v1
- Date: Wed, 18 Sep 2024 12:48:56 GMT
- Title: Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling
- Authors: Arthur Müller, Lukas Vollenkemper,
- Abstract summary: One promising approach is to train an RL agent as an improvement, starting with a suboptimal solution that is iteratively improved by applying small changes.
We apply this approach to a real-world multiobjective production scheduling problem.
We benchmarked our approach against other approaches using real data from our industry partner, demonstrating its superior performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Reinforcement Learning (RL) with heuristic methods is an emerging trend for solving optimization problems, which leverages RL's ability to learn from the data generated during the search process. One promising approach is to train an RL agent as an improvement heuristic, starting with a suboptimal solution that is iteratively improved by applying small changes. We apply this approach to a real-world multiobjective production scheduling problem. Our approach utilizes a network architecture that includes Transformer encoding to learn the relationships between jobs. Afterwards, a probability matrix is generated from which pairs of jobs are sampled and then swapped to improve the solution. We benchmarked our approach against other heuristics using real data from our industry partner, demonstrating its superior performance.
Related papers
- How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - On Multi-objective Policy Optimization as a Tool for Reinforcement
Learning: Case Studies in Offline RL and Finetuning [24.264618706734012]
We show how to develop novel and more effective deep reinforcement learning algorithms.
We focus on offline RL and finetuning as case studies.
We introduce Distillation of a Mixture of Experts (DiME)
We demonstrate that for offline RL, DiME leads to a simple new algorithm that outperforms state-of-the-art.
arXiv Detail & Related papers (2021-06-15T14:59:14Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.