PhysMamba: Efficient Remote Physiological Measurement with SlowFast Temporal Difference Mamba
- URL: http://arxiv.org/abs/2409.12031v1
- Date: Wed, 18 Sep 2024 14:48:50 GMT
- Title: PhysMamba: Efficient Remote Physiological Measurement with SlowFast Temporal Difference Mamba
- Authors: Chaoqi Luo, Yiping Xie, Zitong Yu,
- Abstract summary: Previous deep learning based r measurement are primarily based on CNNs and Transformers.
We propose PhysMamba, a Mamba-based framework, to efficiently represent long-range physiological dependencies from facial videos.
Extensive experiments are conducted on three benchmark datasets to demonstrate the superiority and efficiency of PhysMamba.
- Score: 20.435381963248787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial-video based Remote photoplethysmography (rPPG) aims at measuring physiological signals and monitoring heart activity without any contact, showing significant potential in various applications. Previous deep learning based rPPG measurement are primarily based on CNNs and Transformers. However, the limited receptive fields of CNNs restrict their ability to capture long-range spatio-temporal dependencies, while Transformers also struggle with modeling long video sequences with high complexity. Recently, the state space models (SSMs) represented by Mamba are known for their impressive performance on capturing long-range dependencies from long sequences. In this paper, we propose the PhysMamba, a Mamba-based framework, to efficiently represent long-range physiological dependencies from facial videos. Specifically, we introduce the Temporal Difference Mamba block to first enhance local dynamic differences and further model the long-range spatio-temporal context. Moreover, a dual-stream SlowFast architecture is utilized to fuse the multi-scale temporal features. Extensive experiments are conducted on three benchmark datasets to demonstrate the superiority and efficiency of PhysMamba. The codes are available at https://github.com/Chaoqi31/PhysMamba
Related papers
- MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - Mamba-Spike: Enhancing the Mamba Architecture with a Spiking Front-End for Efficient Temporal Data Processing [4.673285689826945]
Mamba-Spike is a novel neuromorphic architecture that integrates a spiking front-end with the Mamba backbone to achieve efficient temporal data processing.
The architecture consistently outperforms state-of-the-art baselines, achieving higher accuracy, lower latency, and improved energy efficiency.
arXiv Detail & Related papers (2024-08-04T14:10:33Z) - RhythmMamba: Fast Remote Physiological Measurement with Arbitrary Length Videos [10.132660483466239]
This paper introduces RhythmMamba, an end-to-end method that employs multi-temporal Mamba to constrain both periodic patterns and short-term trends.
Extensive experiments show that RhythmMamba state-the-art performance with reduced parameters and lower computational complexity.
arXiv Detail & Related papers (2024-04-09T17:34:19Z) - Vivim: a Video Vision Mamba for Medical Video Segmentation [52.11785024350253]
This paper presents a Video Vision Mamba-based framework, dubbed as Vivim, for medical video segmentation tasks.
Our Vivim can effectively compress the long-term representation into sequences at varying scales.
Experiments on thyroid segmentation, breast lesion segmentation in ultrasound videos, and polyp segmentation in colonoscopy videos demonstrate the effectiveness and efficiency of our Vivim.
arXiv Detail & Related papers (2024-01-25T13:27:03Z) - MoLo: Motion-augmented Long-short Contrastive Learning for Few-shot
Action Recognition [50.345327516891615]
We develop a Motion-augmented Long-short Contrastive Learning (MoLo) method that contains two crucial components, including a long-short contrastive objective and a motion autodecoder.
MoLo can simultaneously learn long-range temporal context and motion cues for comprehensive few-shot matching.
arXiv Detail & Related papers (2023-04-03T13:09:39Z) - PhysFormer++: Facial Video-based Physiological Measurement with SlowFast
Temporal Difference Transformer [76.40106756572644]
Recent deep learning approaches focus on mining subtle clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose two end-to-end video transformer based on PhysFormer and Phys++++, to adaptively aggregate both local and global features for r representation enhancement.
Comprehensive experiments are performed on four benchmark datasets to show our superior performance on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2023-02-07T15:56:03Z) - Slow-Fast Visual Tempo Learning for Video-based Action Recognition [78.3820439082979]
Action visual tempo characterizes the dynamics and the temporal scale of an action.
Previous methods capture the visual tempo either by sampling raw videos with multiple rates, or by hierarchically sampling backbone features.
We propose a Temporal Correlation Module (TCM) to extract action visual tempo from low-level backbone features at single-layer remarkably.
arXiv Detail & Related papers (2022-02-24T14:20:04Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.