A Unified Framework for Neural Computation and Learning Over Time
- URL: http://arxiv.org/abs/2409.12038v1
- Date: Wed, 18 Sep 2024 14:57:13 GMT
- Title: A Unified Framework for Neural Computation and Learning Over Time
- Authors: Stefano Melacci, Alessandro Betti, Michele Casoni, Tommaso Guidi, Matteo Tiezzi, Marco Gori,
- Abstract summary: Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
- Score: 56.44910327178975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes Hamiltonian Learning, a novel unified framework for learning with neural networks "over time", i.e., from a possibly infinite stream of data, in an online manner, without having access to future information. Existing works focus on the simplified setting in which the stream has a known finite length or is segmented into smaller sequences, leveraging well-established learning strategies from statistical machine learning. In this paper, the problem of learning over time is rethought from scratch, leveraging tools from optimal control theory, which yield a unifying view of the temporal dynamics of neural computations and learning. Hamiltonian Learning is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives. The proposed framework is showcased by experimentally proving how it can recover gradient-based learning, comparing it to out-of-the box optimizers, and describing how it is flexible enough to switch from fully-local to partially/non-local computational schemes, possibly distributed over multiple devices, and BackPropagation without storing activations. Hamiltonian Learning is easy to implement and can help researches approach in a principled and innovative manner the problem of learning over time.
Related papers
- Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
We use a dataset-process approach to derive flow equations describing learning.
We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve.
This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
arXiv Detail & Related papers (2024-09-05T17:58:28Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Nature-Inspired Local Propagation [68.63385571967267]
Natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way as to respect locality.
We show that the algorithmic interpretation of the derived "laws of learning", which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity.
This opens the doors to machine learning based on full on-line information that are based the replacement of Backpropagation with the proposed local algorithm.
arXiv Detail & Related papers (2024-02-04T21:43:37Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.