Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
- URL: http://arxiv.org/abs/2409.12323v1
- Date: Wed, 18 Sep 2024 21:36:37 GMT
- Title: Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
- Authors: Jinchang Zhang, Ningning Xu, Hao Zhang, Guoyu Lu,
- Abstract summary: We propose a self-supervised framework based on 3D Gaussian splatting and Siamese networks for depth estimation in 3D geometry.
The proposed framework has been validated on both artificially synthesized and real blurred datasets.
- Score: 14.354405484663285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth estimation is a fundamental task in 3D geometry. While stereo depth estimation can be achieved through triangulation methods, it is not as straightforward for monocular methods, which require the integration of global and local information. The Depth from Defocus (DFD) method utilizes camera lens models and parameters to recover depth information from blurred images and has been proven to perform well. However, these methods rely on All-In-Focus (AIF) images for depth estimation, which is nearly impossible to obtain in real-world applications. To address this issue, we propose a self-supervised framework based on 3D Gaussian splatting and Siamese networks. By learning the blur levels at different focal distances of the same scene in the focal stack, the framework predicts the defocus map and Circle of Confusion (CoC) from a single defocused image, using the defocus map as input to DepthNet for monocular depth estimation. The 3D Gaussian splatting model renders defocused images using the predicted CoC, and the differences between these and the real defocused images provide additional supervision signals for the Siamese Defocus self-supervised network. This framework has been validated on both artificially synthesized and real blurred datasets. Subsequent quantitative and visualization experiments demonstrate that our proposed framework is highly effective as a DFD method.
Related papers
- Blur aware metric depth estimation with multi-focus plenoptic cameras [8.508198765617196]
We present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera.
The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used.
arXiv Detail & Related papers (2023-08-08T13:38:50Z) - Depth and DOF Cues Make A Better Defocus Blur Detector [27.33757097343283]
Defocus blur detection (DBD) separates in-focus and out-of-focus regions in an image.
Previous approaches mistakenly mistook homogeneous areas in focus for defocus blur regions.
We propose an approach called D-DFFNet, which incorporates depth and DOF cues in an implicit manner.
arXiv Detail & Related papers (2023-06-20T07:03:37Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
We propose a self-supervised framework that estimates depth purely from a sparse focal stack.
We show that our framework circumvents the needs for the depth and AIF image ground-truth, and receives superior predictions.
arXiv Detail & Related papers (2023-03-19T19:59:48Z) - Learning Depth from Focus in the Wild [16.27391171541217]
We present a convolutional neural network-based depth estimation from single focal stacks.
Our method allows depth maps to be inferred in an end-to-end manner even with image alignment.
For the generalization of the proposed network, we develop a simulator to realistically reproduce the features of commercial cameras.
arXiv Detail & Related papers (2022-07-20T05:23:29Z) - Single image deep defocus estimation and its applications [82.93345261434943]
We train a deep neural network to classify image patches into one of the 20 levels of blurriness.
The trained model is used to determine the patch blurriness which is then refined by applying an iterative weighted guided filter.
The result is a defocus map that carries the information of the degree of blurriness for each pixel.
arXiv Detail & Related papers (2021-07-30T06:18:16Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
We introduce depth information into DBD for the first time.
In detail, we learn the defocus blur from ground truth and the depth distilled from a well-trained depth estimation network.
Our approach outperforms 11 other state-of-the-art methods on two popular datasets.
arXiv Detail & Related papers (2020-07-16T04:58:09Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.