Perceptions of the Fairness Impacts of Multiplicity in Machine Learning
- URL: http://arxiv.org/abs/2409.12332v2
- Date: Thu, 23 Jan 2025 17:16:11 GMT
- Title: Perceptions of the Fairness Impacts of Multiplicity in Machine Learning
- Authors: Anna P. Meyer, Yea-Seul Kim, Aws Albarghouthi, Loris D'Antoni,
- Abstract summary: Multiplicity - the existence of multiple good models - means that some predictions are essentially arbitrary.
We conduct a survey to see how multiplicity impacts lay stakeholders' perceptions of machine learning fairness.
Our results indicate that model developers should be intentional about dealing with multiplicity in order to maintain fairness.
- Score: 22.442918897954957
- License:
- Abstract: Machine learning (ML) is increasingly used in high-stakes settings, yet multiplicity - the existence of multiple good models - means that some predictions are essentially arbitrary. ML researchers and philosophers posit that multiplicity poses a fairness risk, but no studies have investigated whether stakeholders agree. In this work, we conduct a survey to see how multiplicity impacts lay stakeholders' - i.e., decision subjects' - perceptions of ML fairness, and which approaches to address multiplicity they prefer. We investigate how these perceptions are modulated by task characteristics (e.g., stakes and uncertainty). Survey respondents think that multiplicity threatens the fairness of model outcomes, but not the appropriateness of using the model, even though existing work suggests the opposite. Participants are strongly against resolving multiplicity by using a single model (effectively ignoring multiplicity) or by randomizing the outcomes. Our results indicate that model developers should be intentional about dealing with multiplicity in order to maintain fairness.
Related papers
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - Recourse under Model Multiplicity via Argumentative Ensembling
(Technical Report) [17.429631079094186]
We name recourse-aware ensembling, and identify several desirable properties which methods for solving it should satisfy.
We show theoretically and experimentally that argumentative ensembling satisfies properties which the existing methods lack, and that the trade-offs are minimal wrt accuracy.
arXiv Detail & Related papers (2023-12-22T22:33:39Z) - An Empirical Investigation into Benchmarking Model Multiplicity for
Trustworthy Machine Learning: A Case Study on Image Classification [0.8702432681310401]
This paper offers a one-stop empirical benchmark of multiplicity across various dimensions of model design.
We also develop a framework, which we call multiplicity sheets, to benchmark multiplicity in various scenarios.
We show that multiplicity persists in deep learning models even after enforcing additional specifications during model selection.
arXiv Detail & Related papers (2023-11-24T22:30:38Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
We introduce a conceptual and computational framework for assessing how the choice of target affects individuals' outcomes.
We show that the level of multiplicity that stems from target variable choice can be greater than that stemming from nearly-optimal models of a single target.
arXiv Detail & Related papers (2023-06-23T18:57:14Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
We argue that individuals can be harmed when one predictor is chosen ad hoc from a group of equally well performing models.
Our findings suggest that such unfairness can be readily found in real life and it may be difficult to mitigate by technical means alone.
arXiv Detail & Related papers (2022-03-14T14:33:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.