Shape-informed surrogate models based on signed distance function domain encoding
- URL: http://arxiv.org/abs/2409.12400v1
- Date: Thu, 19 Sep 2024 01:47:04 GMT
- Title: Shape-informed surrogate models based on signed distance function domain encoding
- Authors: Linying Zhang, Stefano Pagani, Jun Zhang, Francesco Regazzoni,
- Abstract summary: We propose a non-intrusive method to build surrogate models that approximate the solution of parameterized partial differential equations (PDEs)
Our approach is based on the combination of two neural networks (NNs)
- Score: 8.052704959617207
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a non-intrusive method to build surrogate models that approximate the solution of parameterized partial differential equations (PDEs), capable of taking into account the dependence of the solution on the shape of the computational domain. Our approach is based on the combination of two neural networks (NNs). The first NN, conditioned on a latent code, provides an implicit representation of geometry variability through signed distance functions. This automated shape encoding technique generates compact, low-dimensional representations of geometries within a latent space, without requiring the explicit construction of an encoder. The second NN reconstructs the output physical fields independently for each spatial point, thus avoiding the computational burden typically associated with high-dimensional discretizations like computational meshes. Furthermore, we show that accuracy in geometrical characterization can be further enhanced by employing Fourier feature mapping as input feature of the NN. The meshless nature of the proposed method, combined with the dimensionality reduction achieved through automatic feature extraction in latent space, makes it highly flexible and computationally efficient. This strategy eliminates the need for manual intervention in extracting geometric parameters, and can even be applied in cases where geometries undergo changes in their topology. Numerical tests in the field of fluid dynamics and solid mechanics demonstrate the effectiveness of the proposed method in accurately predict the solution of PDEs in domains of arbitrary shape. Remarkably, the results show that it achieves accuracy comparable to the best-case scenarios where an explicit parametrization of the computational domain is available.
Related papers
- An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
We present two effective methods for solving high-dimensional partial differential equations (PDE) based on randomized neural networks.
We present ample numerical simulations for a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their performance.
arXiv Detail & Related papers (2023-09-13T15:59:02Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
Non-linear independent dual system (NIDS) is a deep learning surrogate model for discretization-independent, continuous representation of PDE solutions.
NIDS can be used for prediction over domains with complex, variable geometries and mesh topologies.
Test cases include a vehicle problem with complex geometry and data scarcity, enabled by a training method.
arXiv Detail & Related papers (2021-09-14T23:38:41Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
The random feature model is a parametric approximation to kernel or regression methods.
We propose a methodology for use of the random feature model as a data-driven surrogate for operators that map an input Banach space to an output Banach space.
arXiv Detail & Related papers (2020-05-20T17:41:40Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
We develop a framework for data-driven approximation of input-output maps between infinite-dimensional spaces.
The proposed approach is motivated by the recent successes of neural networks and deep learning.
For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology.
arXiv Detail & Related papers (2020-05-07T00:09:27Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.