Mutual Information-based Representations Disentanglement for Unaligned Multimodal Language Sequences
- URL: http://arxiv.org/abs/2409.12408v1
- Date: Thu, 19 Sep 2024 02:12:26 GMT
- Title: Mutual Information-based Representations Disentanglement for Unaligned Multimodal Language Sequences
- Authors: Fan Qian, Jiqing Han, Jianchen Li, Yongjun He, Tieran Zheng, Guibin Zheng,
- Abstract summary: Key challenge in unaligned multimodal language sequences is to integrate information from various modalities to obtain a refined multimodal joint representation.
We propose a Mutual Information-based Representations Disentanglement (MIRD) method for unaligned multimodal language sequences.
- Score: 25.73415065546444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key challenge in unaligned multimodal language sequences lies in effectively integrating information from various modalities to obtain a refined multimodal joint representation. Recently, the disentangle and fuse methods have achieved the promising performance by explicitly learning modality-agnostic and modality-specific representations and then fusing them into a multimodal joint representation. However, these methods often independently learn modality-agnostic representations for each modality and utilize orthogonal constraints to reduce linear correlations between modality-agnostic and modality-specific representations, neglecting to eliminate their nonlinear correlations. As a result, the obtained multimodal joint representation usually suffers from information redundancy, leading to overfitting and poor generalization of the models. In this paper, we propose a Mutual Information-based Representations Disentanglement (MIRD) method for unaligned multimodal language sequences, in which a novel disentanglement framework is designed to jointly learn a single modality-agnostic representation. In addition, the mutual information minimization constraint is employed to ensure superior disentanglement of representations, thereby eliminating information redundancy within the multimodal joint representation. Furthermore, the challenge of estimating mutual information caused by the limited labeled data is mitigated by introducing unlabeled data. Meanwhile, the unlabeled data also help to characterize the underlying structure of multimodal data, consequently further preventing overfitting and enhancing the performance of the models. Experimental results on several widely used benchmark datasets validate the effectiveness of our proposed approach.
Related papers
- Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
Multimodal variational autoencoders (VAEs) aim to capture shared latent representations by integrating information from different data modalities.
A significant challenge is accurately inferring representations from any subset of modalities without training an impractical number of inference networks for all possible modality combinations.
We introduce multimodal iterative amortized inference, an iterative refinement mechanism within the multimodal VAE framework.
arXiv Detail & Related papers (2024-10-15T08:49:38Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
This research studies the realistic scenario in which all modalities and class labels are available for model training.
We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities.
arXiv Detail & Related papers (2021-10-09T17:22:24Z) - Learning Multimodal VAEs through Mutual Supervision [72.77685889312889]
MEME combines information between modalities implicitly through mutual supervision.
We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes.
arXiv Detail & Related papers (2021-06-23T17:54:35Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
Most multi-modal machine learning methods require that all the modalities used for training are also available for testing.
To address this limitation, we aim to improve the testing performance of uni-modal systems using multiple modalities during training only.
The proposed multi-modal training framework uses cross-modal translation and correlation-based latent space alignment.
arXiv Detail & Related papers (2020-11-03T11:18:04Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z) - Learning Multi-Modal Nonlinear Embeddings: Performance Bounds and an
Algorithm [8.528384027684192]
We present a theoretical analysis of learning multi-modal nonlinear embeddings in a supervised setting.
We then propose a multi-modal nonlinear representation learning algorithm that is motivated by these theoretical findings.
Experimental comparison to recent multi-modal and single-modal learning algorithms suggests that the proposed method yields promising performance in multi-modal image classification and cross-modal image-text retrieval applications.
arXiv Detail & Related papers (2020-06-03T15:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.