Frequency-Guided Spatial Adaptation for Camouflaged Object Detection
- URL: http://arxiv.org/abs/2409.12421v1
- Date: Thu, 19 Sep 2024 02:53:48 GMT
- Title: Frequency-Guided Spatial Adaptation for Camouflaged Object Detection
- Authors: Shizhou Zhang, Dexuan Kong, Yinghui Xing, Yue Lu, Lingyan Ran, Guoqiang Liang, Hexu Wang, Yanning Zhang,
- Abstract summary: We propose a novel frequency-guided spatial adaptation method for COD task.
By grouping and interacting with frequency components located within non overlapping circles in the spectrogram, different frequency components are dynamically enhanced or weakened.
At the same time, the features that are conducive to distinguishing object and background are highlighted, indirectly implying the position and shape of camouflaged object.
- Score: 34.11591418717486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD) aims to segment camouflaged objects which exhibit very similar patterns with the surrounding environment. Recent research works have shown that enhancing the feature representation via the frequency information can greatly alleviate the ambiguity problem between the foreground objects and the background.With the emergence of vision foundation models, like InternImage, Segment Anything Model etc, adapting the pretrained model on COD tasks with a lightweight adapter module shows a novel and promising research direction. Existing adapter modules mainly care about the feature adaptation in the spatial domain. In this paper, we propose a novel frequency-guided spatial adaptation method for COD task. Specifically, we transform the input features of the adapter into frequency domain. By grouping and interacting with frequency components located within non overlapping circles in the spectrogram, different frequency components are dynamically enhanced or weakened, making the intensity of image details and contour features adaptively adjusted. At the same time, the features that are conducive to distinguishing object and background are highlighted, indirectly implying the position and shape of camouflaged object. We conduct extensive experiments on four widely adopted benchmark datasets and the proposed method outperforms 26 state-of-the-art methods with large margins. Code will be released.
Related papers
- Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
This paper proposes an adaptive guidance learning network, dubbed textitAGLNet, to guide accurate camouflaged feature learning.
Experiments on three widely used COD benchmark datasets demonstrate that the proposed method achieves significant performance improvements.
arXiv Detail & Related papers (2024-05-05T06:21:58Z) - Unveiling Camouflage: A Learnable Fourier-based Augmentation for
Camouflaged Object Detection and Instance Segmentation [27.41886911999097]
We propose a learnable augmentation method for camouflaged object detection (COD) and camouflaged instance segmentation (CIS)
Our proposed augmentation method boosts the performance of camouflaged object detectors and camouflaged instance segmenters by large margins.
arXiv Detail & Related papers (2023-08-29T22:43:46Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Pre-train, Adapt and Detect: Multi-Task Adapter Tuning for Camouflaged
Object Detection [38.5505943598037]
We propose a novel pre-train, adapt and detect' paradigm to detect camouflaged objects.
By introducing a large pre-trained model, abundant knowledge learned from massive multi-modal data can be directly transferred to COD.
Our method outperforms existing state-of-the-art COD models by large margins.
arXiv Detail & Related papers (2023-07-20T08:25:38Z) - Feature Shrinkage Pyramid for Camouflaged Object Detection with
Transformers [34.42710399235461]
Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection.
They suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders.
We propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features.
arXiv Detail & Related papers (2023-03-26T20:50:58Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.