LLMR: Knowledge Distillation with a Large Language Model-Induced Reward
- URL: http://arxiv.org/abs/2409.12500v1
- Date: Thu, 19 Sep 2024 06:27:58 GMT
- Title: LLMR: Knowledge Distillation with a Large Language Model-Induced Reward
- Authors: Dongheng Li, Yongchang Hao, Lili Mou,
- Abstract summary: Large language models have become increasingly popular and demonstrated remarkable performance in various natural language processing (NLP) tasks.
However, these models are typically computationally expensive and difficult to be deployed in resource-constrained environments.
We propose LLMR, a novel knowledge distillation (KD) method based on a reward function induced from large language models.
- Score: 24.455147056857356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have become increasingly popular and demonstrated remarkable performance in various natural language processing (NLP) tasks. However, these models are typically computationally expensive and difficult to be deployed in resource-constrained environments. In this paper, we propose LLMR, a novel knowledge distillation (KD) method based on a reward function induced from large language models. We conducted experiments on multiple datasets in the dialogue generation and summarization tasks. Empirical results demonstrate that our LLMR approach consistently outperforms traditional KD methods in different tasks and datasets.
Related papers
- MoD: A Distribution-Based Approach for Merging Large Language Models [0.0]
Large language models (LLMs) have enabled the development of numerous specialized, task-specific variants.
We propose the textitMixture of Distributions (MoD) framework, a novel approach for merging LLMs.
Unlike traditional weight-averaging methods, MoD effectively preserves the specialized capabilities of individual models.
arXiv Detail & Related papers (2024-11-01T07:05:29Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
We introduce a novel MoE-CT architecture that separates the base model's learning from the multilingual expansion process.
Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency.
arXiv Detail & Related papers (2024-06-25T11:03:45Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
Large language models (LLMs) have demonstrated remarkable capabilities across various NLP tasks.
Previous research has attempted to distill the knowledge of LLMs into smaller models by generating annotated data.
We propose EvoKD: Evolving Knowledge Distillation, which leverages the concept of active learning to interactively enhance the process of data generation using large language models.
arXiv Detail & Related papers (2024-03-11T03:55:24Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - A Cohesive Distillation Architecture for Neural Language Models [0.0]
A recent trend in Natural Language Processing is the exponential growth in Language Model (LM) size.
This study investigates methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale models.
arXiv Detail & Related papers (2023-01-12T08:01:53Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.