Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks
- URL: http://arxiv.org/abs/2409.12507v1
- Date: Thu, 19 Sep 2024 06:52:34 GMT
- Title: Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks
- Authors: Xian Zhong, Shengwang Hu, Wenxuan Liu, Wenxin Huang, Jianhao Ding, Zhaofei Yu, Tiejun Huang,
- Abstract summary: Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
- Score: 50.32980443749865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biological interpretability. Their rich spatio-temporal information processing capability and event-driven nature make them ideally well-suited for neuromorphic datasets. However, current SNNs struggle to balance accuracy and latency in classifying these datasets. In this paper, we propose Hybrid Step-wise Distillation (HSD) method, tailored for neuromorphic datasets, to mitigate the notable decline in performance at lower time steps. Our work disentangles the dependency between the number of event frames and the time steps of SNNs, utilizing more event frames during the training stage to improve performance, while using fewer event frames during the inference stage to reduce latency. Nevertheless, the average output of SNNs across all time steps is susceptible to individual time step with abnormal outputs, particularly at extremely low time steps. To tackle this issue, we implement Step-wise Knowledge Distillation (SKD) module that considers variations in the output distribution of SNNs at each time step. Empirical evidence demonstrates that our method yields competitive performance in classification tasks on neuromorphic datasets, especially at lower time steps. Our code will be available at: {https://github.com/hsw0929/HSD}.
Related papers
- Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Shrinking Your TimeStep: Towards Low-Latency Neuromorphic Object
Recognition with Spiking Neural Network [5.174808367448261]
Neuromorphic object recognition with spiking neural networks (SNNs) is the cornerstone of low-power neuromorphic computing.
Existing SNNs suffer from significant latency, utilizing 10 to 40 timesteps or more, to recognize neuromorphic objects.
In this work, we propose the Shrinking SNN (SSNN) to achieve low-latency neuromorphic object recognition without reducing performance.
arXiv Detail & Related papers (2024-01-02T02:05:05Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
Spiking Neural Networks are well-suited for edge AI applications due to their binary spike nature.
In this paper, we focus on generating highly accurate and low-latency SNNs specifically for object detection.
arXiv Detail & Related papers (2023-09-27T10:26:19Z) - Temporal Contrastive Learning for Spiking Neural Networks [23.963069990569714]
Biologically inspired neural networks (SNNs) have garnered considerable attention due to their low-energy consumption and better-temporal information processing capabilities.
We propose a novel method to obtain SNNs with low latency and high performance by incorporating contrastive supervision with temporal domain information.
arXiv Detail & Related papers (2023-05-23T10:31:46Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Ultra-low Latency Spiking Neural Networks with Spatio-Temporal
Compression and Synaptic Convolutional Block [4.081968050250324]
Spiking neural networks (SNNs) have neuro-temporal information capability, low processing feature, and high biological plausibility.
Neuro-MNIST, CIFAR10-S, DVS128 gesture datasets need to aggregate individual events into frames with a higher temporal resolution for event stream classification.
We propose a processing-temporal compression method to aggregate individual events into a few time steps of NIST current to reduce the training and inference latency.
arXiv Detail & Related papers (2022-03-18T15:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.