Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization
- URL: http://arxiv.org/abs/2409.12903v2
- Date: Fri, 20 Sep 2024 16:22:37 GMT
- Title: Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization
- Authors: Mohammad Samragh, Iman Mirzadeh, Keivan Alizadeh Vahid, Fartash Faghri, Minsik Cho, Moin Nabi, Devang Naik, Mehrdad Farajtabar,
- Abstract summary: We introduce HyperCloning, a method that can expand the parameters of a pre-trained language model to those of a larger model with increased hidden dimensions.
As a result, the larger model already inherits the predictive power and accuracy of the smaller model before the training starts.
- Score: 22.90653167145603
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The pre-training phase of language models often begins with randomly initialized parameters. With the current trends in scaling models, training their large number of parameters can be extremely slow and costly. In contrast, small language models are less expensive to train, but they often cannot achieve the accuracy of large models. In this paper, we explore an intriguing idea to connect these two different regimes: Can we develop a method to initialize large language models using smaller pre-trained models? Will such initialization bring any benefits in terms of training time and final accuracy? In this paper, we introduce HyperCloning, a method that can expand the parameters of a pre-trained language model to those of a larger model with increased hidden dimensions. Our method ensures that the larger model retains the functionality of the smaller model. As a result, the larger model already inherits the predictive power and accuracy of the smaller model before the training starts. We demonstrate that training such an initialized model results in significant savings in terms of GPU hours required for pre-training large language models.
Related papers
- Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models [29.367678364485794]
We show how to design efficacious data distributions and learning rate schedules for continued pretraining of language models.
We show an improvement of 9% in average model accuracy compared to the baseline of continued training on the pretraining set.
arXiv Detail & Related papers (2024-07-09T22:37:59Z) - Emergent Abilities in Reduced-Scale Generative Language Models [10.51168925267033]
Large language models can solve new tasks without task-specific fine-tuning.
This ability is considered an emergent ability and is primarily seen in large language models with billions of parameters.
This study investigates if such emergent properties are strictly tied to model size or can be demonstrated by smaller models trained on reduced-scale data.
arXiv Detail & Related papers (2024-04-02T18:00:28Z) - Initializing Models with Larger Ones [76.41561758293055]
We introduce weight selection, a method for initializing smaller models by selecting a subset of weights from a pretrained larger model.
Our experiments demonstrate that weight selection can significantly enhance the performance of small models and reduce their training time.
arXiv Detail & Related papers (2023-11-30T18:58:26Z) - nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales [65.01417261415833]
We present an approach to predict the pre-training loss based on our observations that Maximal Update Parametrization (muP) enables accurate fitting of scaling laws.
With around 14% of the one-time pre-training cost, we can accurately forecast the loss for models up to 52B.
Our goal with nanoLM is to empower researchers with limited resources to reach meaningful conclusions on large models.
arXiv Detail & Related papers (2023-04-14T00:45:01Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
Scaling up language models has led to unprecedented performance gains.
How do language models of different sizes learn during pre-training?
Why do larger language models demonstrate more desirable behaviors?
arXiv Detail & Related papers (2022-12-19T19:16:29Z) - What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? [50.84738303888189]
We present a large-scale evaluation of modeling choices and their impact on zero-shot generalization.
We train models with over 5 billion parameters for more than 170 billion tokens.
We find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models.
arXiv Detail & Related papers (2022-04-12T14:19:49Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - Transfer training from smaller language model [6.982133308738434]
We find a method to save training time and resource cost by changing the small well-trained model to large model.
We test the target model on several data sets and find it is still comparable with the source model.
arXiv Detail & Related papers (2021-04-23T02:56:02Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.