Comprehensive Overview of Artificial Intelligence Applications in Modern Industries
- URL: http://arxiv.org/abs/2409.13059v1
- Date: Thu, 19 Sep 2024 19:22:52 GMT
- Title: Comprehensive Overview of Artificial Intelligence Applications in Modern Industries
- Authors: Yijie Weng, Jianhao Wu, Tara Kelly, William Johnson,
- Abstract summary: This paper explores the applications of AI across four key sectors: healthcare, finance, manufacturing, and retail.
We discuss the implications of AI integration, including ethical considerations, the future trajectory of AI development, and its potential to drive economic growth.
- Score: 0.3374875022248866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) is fundamentally reshaping various industries by enhancing decision-making processes, optimizing operations, and unlocking new opportunities for innovation. This paper explores the applications of AI across four key sectors: healthcare, finance, manufacturing, and retail. Each section delves into the specific challenges faced by these industries, the AI technologies employed to address them, and the measurable impact on business outcomes and societal welfare. We also discuss the implications of AI integration, including ethical considerations, the future trajectory of AI development, and its potential to drive economic growth while posing challenges that need to be managed responsibly.
Related papers
- The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges [0.9217021281095907]
The outlook for the future of artificial intelligence (AI) in the financial sector, especially in financial forecasting.
The dynamics of AI technology, including deep learning, reinforcement learning, and integration with blockchAIn and the Internet of Things.
The integration of AI challenges regulatory and ethical issues in the financial sector, as well as the implications for data privacy protection.
arXiv Detail & Related papers (2024-11-07T15:35:16Z) - Adapting to the AI Disruption: Reshaping the IT Landscape and Educational Paradigms [0.0]
Artificial intelligence (AI) signals the beginning of a revolutionary period where technological advancement and social change interact.
This essay addresses the opportunities and problems brought about by the AI-driven economy as it examines the effects of AI disruption on the IT sector and information technology education.
arXiv Detail & Related papers (2024-09-01T09:39:25Z) - Informatics & dairy industry coalition: AI trends and present challenges [5.014059576916173]
This work comprehensively describes industrial challenges where AI can be exploited, focusing on the dairy industry.
The conclusions presented can help researchers apply novel approaches for cattle monitoring and farmers by proposing advanced technological solutions to their needs.
arXiv Detail & Related papers (2024-06-18T16:39:21Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
Cyber-Physical Systems (CPS) generate vast data sets that can be leveraged by Artificial Intelligence (AI) for applications including predictive maintenance and production planning.
Despite the demonstrated potential of AI, its widespread adoption in sectors like manufacturing remains limited.
arXiv Detail & Related papers (2024-05-28T20:54:41Z) - Perceptions of the Fourth Industrial Revolution and Artificial
Intelligence Impact on Society [0.966840768820136]
The study aims to examine the perceptions of individuals in different information flow categorizations toward AI.
Results reveal key themes in participant-supplied definitions of AI and the fourth industrial revolution.
Participants expressed concerns about job replacement, privacy invasion, and inaccurate information provided by AI.
arXiv Detail & Related papers (2023-07-31T13:16:37Z) - Applications and Societal Implications of Artificial Intelligence in
Manufacturing: A Systematic Review [0.3867363075280544]
The study finds that there is a predominantly optimistic outlook in prior literature regarding AI's impact on firms.
The paper draws analogies to historical cases and other examples to provide a contextual perspective on potential societal effects of industrial AI.
arXiv Detail & Related papers (2023-07-25T07:17:37Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Validate and Enable Machine Learning in Industrial AI [47.20869253934116]
Industrial AI promises more efficient future industrial control systems.
The Petuum Optimum system is used as an example to showcase the challenges in making and testing AI models.
arXiv Detail & Related papers (2020-10-30T20:33:05Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI technologies have raised new challenges to the quantitative investment system.
Qlib aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.
arXiv Detail & Related papers (2020-09-22T12:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.