CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information
- URL: http://arxiv.org/abs/2409.13199v1
- Date: Fri, 20 Sep 2024 04:03:27 GMT
- Title: CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information
- Authors: Yuxin Wang, Minghua Ma, Zekun Wang, Jingchang Chen, Huiming Fan, Liping Shan, Qing Yang, Dongliang Xu, Ming Liu, Bing Qin,
- Abstract summary: We introduce an efficient structured pruning framework named CFSP.
We first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block.
Results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets.
- Score: 33.01180010689081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.
Related papers
- Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - FALCON: FLOP-Aware Combinatorial Optimization for Neural Network Pruning [17.60353530072587]
Network pruning offers a solution to reduce model size and computational cost while maintaining performance.
Most current pruning methods focus primarily on improving sparsity by reducing the number of nonzero parameters.
We propose FALCON, a novel-optimization-based framework for network pruning that jointly takes into account model accuracy (fidelity), FLOPs, and sparsity constraints.
arXiv Detail & Related papers (2024-03-11T18:40:47Z) - Fluctuation-based Adaptive Structured Pruning for Large Language Models [44.217363567065]
FLAP (FLuctuation-based Adaptive Structured Pruning) is a retraining-free structured pruning framework for Large Language Models.
It is hardware-friendly by effectively reducing storage and enhancing inference speed.
arXiv Detail & Related papers (2023-12-19T09:23:48Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Feature Flow Regularization: Improving Structured Sparsity in Deep
Neural Networks [12.541769091896624]
Pruning is a model compression method that removes redundant parameters in deep neural networks (DNNs)
We propose a simple and effective regularization strategy from a new perspective of evolution of features, which we call feature flow regularization (FFR)
Experiments with VGGNets, ResNets on CIFAR-10/100, and Tiny ImageNet datasets demonstrate that FFR can significantly improve both unstructured and structured sparsity.
arXiv Detail & Related papers (2021-06-05T15:00:50Z) - Dynamic Probabilistic Pruning: A general framework for
hardware-constrained pruning at different granularities [80.06422693778141]
We propose a flexible new pruning mechanism that facilitates pruning at different granularities (weights, kernels, filters/feature maps)
We refer to this algorithm as Dynamic Probabilistic Pruning (DPP)
We show that DPP achieves competitive compression rates and classification accuracy when pruning common deep learning models trained on different benchmark datasets for image classification.
arXiv Detail & Related papers (2021-05-26T17:01:52Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
A common limitation of most existing pruning techniques is that they require pre-training of the network at least once before pruning.
We propose STAMP, which task-adaptively prunes a network pretrained on a large reference dataset by generating a pruning mask on it as a function of the target dataset.
We validate STAMP against recent advanced pruning methods on benchmark datasets.
arXiv Detail & Related papers (2020-06-22T10:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.