Enhancing Fruit and Vegetable Detection in Unconstrained Environment with a Novel Dataset
- URL: http://arxiv.org/abs/2409.13330v1
- Date: Fri, 20 Sep 2024 08:46:03 GMT
- Title: Enhancing Fruit and Vegetable Detection in Unconstrained Environment with a Novel Dataset
- Authors: Sandeep Khanna, Chiranjoy Chattopadhyay, Suman Kundu,
- Abstract summary: This paper presents an end-to-end pipeline for detecting and localizing fruits and vegetables in real-world scenarios.
We have curated a dataset named FRUVEG67 that includes images of 67 classes of fruits and vegetables captured in unconstrained scenarios.
For detection, we introduce the Fruit and Vegetable Detection Network (FVDNet), an ensemble version of YOLOv7 featuring three distinct grid configurations.
- Score: 4.498047714838568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating the detection of fruits and vegetables using computer vision is essential for modernizing agriculture, improving efficiency, ensuring food quality, and contributing to technologically advanced and sustainable farming practices. This paper presents an end-to-end pipeline for detecting and localizing fruits and vegetables in real-world scenarios. To achieve this, we have curated a dataset named FRUVEG67 that includes images of 67 classes of fruits and vegetables captured in unconstrained scenarios, with only a few manually annotated samples per class. We have developed a semi-supervised data annotation algorithm (SSDA) that generates bounding boxes for objects to label the remaining non-annotated images. For detection, we introduce the Fruit and Vegetable Detection Network (FVDNet), an ensemble version of YOLOv7 featuring three distinct grid configurations. We employ an averaging approach for bounding-box prediction and a voting mechanism for class prediction. We have integrated Jensen-Shannon divergence (JSD) in conjunction with focal loss to better detect smaller objects. Our experimental results highlight the superiority of FVDNet compared to previous versions of YOLO, showcasing remarkable improvements in detection and localization performance. We achieved an impressive mean average precision (mAP) score of 0.78 across all classes. Furthermore, we evaluated the efficacy of FVDNet using open-category refrigerator images, where it demonstrates promising results.
Related papers
- AgRegNet: A Deep Regression Network for Flower and Fruit Density Estimation, Localization, and Counting in Orchards [3.0988265713549428]
This article proposes a deep regression-based network, AgRegNet, to estimate density, count, and location of flower and fruit in tree fruit canopies.
Inspired by popular U-Net architecture, AgRegNet is a U-shaped network with an encoder-to-decoder skip connection and modified ConvNeXt-T as an encoder feature extractor.
arXiv Detail & Related papers (2024-09-25T22:19:32Z) - A pipeline for multiple orange detection and tracking with 3-D fruit
relocalization and neural-net based yield regression in commercial citrus
orchards [0.0]
We propose a non-invasive alternative that utilizes fruit counting from videos, implemented as a pipeline.
To handle occluded and re-appeared fruit, we introduce a relocalization component that employs 3-D estimation of fruit locations.
By ensuring that at least 30% of the fruit is accurately detected, tracked, and counted, our yield regressor achieves an impressive coefficient of determination of 0.85.
arXiv Detail & Related papers (2023-12-27T21:22:43Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Panoptic Mapping with Fruit Completion and Pose Estimation for
Horticultural Robots [33.21287030243106]
Monitoring plants and fruits at high resolution play a key role in the future of agriculture.
Accurate 3D information can pave the way to a diverse number of robotic applications in agriculture ranging from autonomous harvesting to precise yield estimation.
We address the problem of jointly estimating complete 3D shapes of fruit and their pose in a 3D multi-resolution map built by a mobile robot.
arXiv Detail & Related papers (2023-03-15T20:41:24Z) - Weakly and Semi-Supervised Detection, Segmentation and Tracking of Table
Grapes with Limited and Noisy Data [7.754321012552764]
Modern algorithms are data hungry and it is not always possible to gather enough data to apply the best performing supervised approaches.
We propose a weakly supervised solution to reduce the data needed to get state-of-the-art detection and segmentation in precision agriculture applications.
We show how our methods are able to train new models that achieve high performances with few labelled images and with very simple labelling.
arXiv Detail & Related papers (2022-08-27T12:58:42Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
Automated image classification is a common task for supervised machine learning in food science.
We propose an alternative method based on pre-trained vision transformers (ViTs)
It can be easily implemented with limited resources on a standard device.
arXiv Detail & Related papers (2022-07-10T19:52:20Z) - A methodology for detection and localization of fruits in apples
orchards from aerial images [0.0]
This work presents a methodology for automated fruit counting employing aerial-images.
It includes algorithms based on multiple view geometry to perform fruits tracking.
Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples.
arXiv Detail & Related papers (2021-10-24T01:57:52Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatch is a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes.
We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels.
Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios.
arXiv Detail & Related papers (2020-12-08T11:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.