Audio Codec Augmentation for Robust Collaborative Watermarking of Speech Synthesis
- URL: http://arxiv.org/abs/2409.13382v1
- Date: Fri, 20 Sep 2024 10:33:17 GMT
- Title: Audio Codec Augmentation for Robust Collaborative Watermarking of Speech Synthesis
- Authors: Lauri Juvela, Xin Wang,
- Abstract summary: This paper extends the channel augmentation to work with non-differentiable traditional audio codecs and neural audio codecs.
Listening tests demonstrate collaborative watermarking incurs negligible perceptual degradation with high codecs or DAC at 8kbps.
- Score: 9.48476556434306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic detection of synthetic speech is becoming increasingly important as current synthesis methods are both near indistinguishable from human speech and widely accessible to the public. Audio watermarking and other active disclosure methods of are attracting research activity, as they can complement traditional deepfake defenses based on passive detection. In both active and passive detection, robustness is of major interest. Traditional audio watermarks are particularly susceptible to removal attacks by audio codec application. Most generated speech and audio content released into the wild passes through an audio codec purely as a distribution method. We recently proposed collaborative watermarking as method for making generated speech more easily detectable over a noisy but differentiable transmission channel. This paper extends the channel augmentation to work with non-differentiable traditional audio codecs and neural audio codecs and evaluates transferability and effect of codec bitrate over various configurations. The results show that collaborative watermarking can be reliably augmented by black-box audio codecs using a waveform-domain straight-through-estimator for gradient approximation. Furthermore, that results show that channel augmentation with a neural audio codec transfers well to traditional codecs. Listening tests demonstrate collaborative watermarking incurs negligible perceptual degradation with high bitrate codecs or DAC at 8kbps.
Related papers
- A Closer Look at Neural Codec Resynthesis: Bridging the Gap between Codec and Waveform Generation [65.05719674893999]
We study two different strategies based on token prediction and regression, and introduce a new method based on Schr"odinger Bridge.
We examine how different design choices affect machine and human perception.
arXiv Detail & Related papers (2024-10-29T18:29:39Z) - SNAC: Multi-Scale Neural Audio Codec [1.0753191494611891]
Multi-Scale Neural Audio Codec is a simple extension of RVQ where the quantizers can operate at different temporal resolutions.
This paper proposes Multi-Scale Neural Audio Codec, a simple extension of RVQ where the quantizers can operate at different temporal resolutions.
arXiv Detail & Related papers (2024-10-18T12:24:05Z) - Learning Source Disentanglement in Neural Audio Codec [20.335701584949526]
We introduce the Source-Disentangled Neural Audio Codec (SD-Codec), a novel approach that combines audio coding and source separation.
By jointly learning audio resynthesis and separation, SD-Codec explicitly assigns audio signals from different domains to distinct codebooks, sets of discrete representations.
Experimental results indicate that SD-Codec not only maintains competitive resynthesis quality but also, supported by the separation results, demonstrates successful disentanglement of different sources in the latent space.
arXiv Detail & Related papers (2024-09-17T14:21:02Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization stage.
X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications.
Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation.
arXiv Detail & Related papers (2024-08-30T10:24:07Z) - SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound [40.810505707522324]
SemantiCodec is designed to compress audio into fewer than a hundred tokens per second across diverse audio types.
We show that SemantiCodec significantly outperforms the state-of-the-art Descript on reconstruction quality.
Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs.
arXiv Detail & Related papers (2024-04-30T22:51:36Z) - WavMark: Watermarking for Audio Generation [70.65175179548208]
This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet.
The watermark is imperceptible to human senses and exhibits strong resilience against various attacks.
It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection.
arXiv Detail & Related papers (2023-08-24T13:17:35Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
We tackle the problem of generating audio samples conditioned on descriptive text captions.
In this work, we propose AaudioGen, an auto-regressive model that generates audio samples conditioned on text inputs.
arXiv Detail & Related papers (2022-09-30T10:17:05Z) - Diffsound: Discrete Diffusion Model for Text-to-sound Generation [78.4128796899781]
We propose a novel text-to-sound generation framework that consists of a text encoder, a Vector Quantized Variational Autoencoder (VQ-VAE), a decoder, and a vocoder.
The framework first uses the decoder to transfer the text features extracted from the text encoder to a mel-spectrogram with the help of VQ-VAE, and then the vocoder is used to transform the generated mel-spectrogram into a waveform.
arXiv Detail & Related papers (2022-07-20T15:41:47Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
We present SoundStream, a novel neural audio system that can efficiently compress speech, music and general audio.
SoundStream relies on a fully convolutional encoder/decoder network and a residual vector quantizer, which are trained jointly end-to-end.
We are able to perform joint compression and enhancement either at the encoder or at the decoder side with no additional latency.
arXiv Detail & Related papers (2021-07-07T15:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.