Graph-theoretical approach to the eigenvalue spectrum of perturbed higher-order exceptional points
- URL: http://arxiv.org/abs/2409.13434v1
- Date: Fri, 20 Sep 2024 11:56:15 GMT
- Title: Graph-theoretical approach to the eigenvalue spectrum of perturbed higher-order exceptional points
- Authors: Daniel Grom, Julius Kullig, Malte Röntgen, Jan Wiersig,
- Abstract summary: We advocate a graph-theoretical perspective that contributes to the understanding of perturbative effects on the eigenvalue spectrum of higher-order exceptional points.
We consider an illustrative example, a system of microrings coupled by a semi-infinite waveguide with an end mirror.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exceptional points are special degeneracy points in parameter space that can arise in (effective) non-Hermitian Hamiltonians describing open quantum and wave systems. At an n-th order exceptional point, n eigenvalues and the corresponding eigenvectors simultaneously coalesce. These coalescing eigenvalues typically exhibit a strong response to small perturbations which can be useful for sensor applications. A so-called generic perturbation with strength $\epsilon$ changes the eigenvalues proportional to the n-th root of $\epsilon$. A different eigenvalue behavior under perturbation is called non-generic. An understanding of the behavior of the eigenvalues for various types of perturbations is desirable and also crucial for applications. We advocate a graph-theoretical perspective that contributes to the understanding of perturbative effects on the eigenvalue spectrum of higher-order exceptional points, i.e. n > 2. To highlight the relevance of non-generic perturbations and to give an interpretation for their occurrence, we consider an illustrative example, a system of microrings coupled by a semi-infinite waveguide with an end mirror. Furthermore, the saturation effect occurring for cavity-selective sensing in such a system is naturally explained within the graph-theoretical picture.
Related papers
- Imaginary eigenvalues of Hermitian Hamiltonian with an inverted
potential well and transition to the real spectrum at exceptional point by a
non-Hermitian interaction [0.6144680854063939]
The Hermitian Hamiltonian can possess imaginary eigenvalues in contrast with the common belief that hermiticity is a suffcient condition for real spectrum.
The classical counterpart of the quantum Hamiltonian with non-Hermitian interaction is a complex function of canonical variables.
It becomes by the canonical transformation of variables a real function indicating exactly the one to one quantum-classical correspondence of Hamiltonians.
arXiv Detail & Related papers (2024-02-09T02:58:06Z) - Improving Expressive Power of Spectral Graph Neural Networks with Eigenvalue Correction [55.57072563835959]
spectral graph neural networks are characterized by filters.
We propose an eigenvalue correction strategy that can free filters from the constraints of repeated eigenvalue inputs.
arXiv Detail & Related papers (2024-01-28T08:12:00Z) - Eigenvalues asymptotics of unbounded operators. Two-photon quantum Rabi
model [0.0]
We consider different cases of compact, relatively compact, selfadjoint or nonselfadjoint perturbations.
We give an original proof of the Perelomov factorization theorem for operator of quantum optics.
arXiv Detail & Related papers (2023-12-09T19:27:20Z) - Eigenvalue sensitivity from eigenstate geometry near and beyond
arbitrary-order exceptional points [0.0]
Systems with an effectively non-Hermitian Hamiltonian display an enhanced sensitivity to parametric and dynamic perturbations.
This sensitivity can be quantified by the phase rigidity, which mathematically corresponds to the eigenvalue condition number.
I derive an exact nonperturbative expression for this sensitivity measure that applies to arbitrary eigenvalue configurations.
arXiv Detail & Related papers (2023-07-12T16:36:39Z) - Penalising the biases in norm regularisation enforces sparsity [28.86954341732928]
This work shows the parameters' norm required to represent a function is given by the total variation of its second derivative, weighted by a $sqrt1+x2$ factor.
Notably, this weighting factor disappears when the norm of bias terms is not regularised.
arXiv Detail & Related papers (2023-03-02T15:33:18Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Generalized quantum circuit differentiation rules [23.87373187143897]
Variational quantum algorithms that are used for quantum machine learning rely on the ability to automatically differentiate parametrized quantum circuits.
Here, we propose the rules for differentiating quantum circuits (unitaries) with arbitrary generators.
arXiv Detail & Related papers (2021-08-03T00:29:45Z) - Spectral Properties of Confining Superexponential Potentials [0.0]
Superexponential potentials with an oscillating power show a rich spectral structure with varying amplitudes and wave vectors.
In the parity symmetric case doublets of near degenerate energy eigenvalues emerge in the spectrum.
The corresponding eigenstates are strongly localized in the outer wells of the potential and occur as even-odd pairs.
arXiv Detail & Related papers (2021-03-17T16:38:00Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z) - Tackling small eigen-gaps: Fine-grained eigenvector estimation and
inference under heteroscedastic noise [28.637772416856194]
Two fundamental challenges arise in eigenvector estimation and inference for a low-rank matrix from noisy observations.
We propose estimation and uncertainty quantification procedures for an unknown eigenvector.
We establish optimal procedures to construct confidence intervals for the unknown eigenvalues.
arXiv Detail & Related papers (2020-01-14T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.