Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations
- URL: http://arxiv.org/abs/2409.13559v1
- Date: Fri, 20 Sep 2024 14:59:25 GMT
- Title: Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations
- Authors: Athanasios Karagounis,
- Abstract summary: This paper presents a novel approach for deep visualization via a generative network, offering an improvement over existing methods.
Our model simplifies the architecture by reducing the number of networks used, requiring only a generator and a discriminator.
Our model requires less prior training knowledge and uses a non-adversarial training process, where the discriminator acts as a guide.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach for deep visualization via a generative network, offering an improvement over existing methods. Our model simplifies the architecture by reducing the number of networks used, requiring only a generator and a discriminator, as opposed to the multiple networks traditionally involved. Additionally, our model requires less prior training knowledge and uses a non-adversarial training process, where the discriminator acts as a guide rather than a competitor to the generator. The core contribution of this work is its ability to generate detailed visualization images that align with specific class labels. Our model incorporates a unique skip-connection-inspired block design, which enhances label-directed image generation by propagating class information across multiple layers. Furthermore, we explore how these generated visualizations can be utilized as adversarial examples, effectively fooling classification networks with minimal perceptible modifications to the original images. Experimental results demonstrate that our method outperforms traditional adversarial example generation techniques in both targeted and non-targeted attacks, achieving up to a 94.5% fooling rate with minimal perturbation. This work bridges the gap between visualization methods and adversarial examples, proposing that fooling rate could serve as a quantitative measure for evaluating visualization quality. The insights from this study provide a new perspective on the interpretability of neural networks and their vulnerabilities to adversarial attacks.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Diverse and Tailored Image Generation for Zero-shot Multi-label Classification [3.354528906571718]
zero-shot multi-label classification has garnered considerable attention for its capacity to operate predictions on unseen labels without human annotations.
prevailing approaches often use seen classes as imperfect proxies for unseen ones, resulting in suboptimal performance.
We propose an innovative solution: generating synthetic data to construct a training set explicitly tailored for proxyless training on unseen labels.
arXiv Detail & Related papers (2024-04-04T01:34:36Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
We show that applying methods and architectures from the explainability literature can achieve state-of-the-art performance for the challenging task of domain generalization.
We develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features.
Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.
arXiv Detail & Related papers (2021-04-05T02:27:01Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Counterfactual Generative Networks [59.080843365828756]
We propose to decompose the image generation process into independent causal mechanisms that we train without direct supervision.
By exploiting appropriate inductive biases, these mechanisms disentangle object shape, object texture, and background.
We show that the counterfactual images can improve out-of-distribution with a marginal drop in performance on the original classification task.
arXiv Detail & Related papers (2021-01-15T10:23:12Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.