Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Tensorflow Pretrained Models
- URL: http://arxiv.org/abs/2409.13566v2
- Date: Wed, 11 Dec 2024 04:40:00 GMT
- Title: Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Tensorflow Pretrained Models
- Authors: Keyu Chen, Ziqian Bi, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Ming Li, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Pohsun Feng,
- Abstract summary: The study covers modern architectures, including ResNet, MobileNet, and EfficientNet.
A comparison of linear probing and model fine-tuning is presented, supplemented by visualizations using techniques like PCA, t-SNE, and UMAP.
- Score: 17.372501468675303
- License:
- Abstract: The application of TensorFlow pre-trained models in deep learning is explored, with an emphasis on practical guidance for tasks such as image classification and object detection. The study covers modern architectures, including ResNet, MobileNet, and EfficientNet, and demonstrates the effectiveness of transfer learning through real-world examples and experiments. A comparison of linear probing and model fine-tuning is presented, supplemented by visualizations using techniques like PCA, t-SNE, and UMAP, allowing for an intuitive understanding of the impact of these approaches. The work provides complete example code and step-by-step instructions, offering valuable insights for both beginners and advanced users. By integrating theoretical concepts with hands-on practice, the paper equips readers with the tools necessary to address deep learning challenges efficiently.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA) and logistic regression.
The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness.
arXiv Detail & Related papers (2024-10-02T10:03:29Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer [16.957968437298124]
Book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management.
Offers intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work.
arXiv Detail & Related papers (2024-09-25T17:31:45Z) - InFiConD: Interactive No-code Fine-tuning with Concept-based Knowledge Distillation [18.793275018467163]
This paper presents InFiConD, a novel framework that leverages visual concepts to implement the knowledge distillation process.
We develop a novel knowledge distillation pipeline based on extracting text-aligned visual concepts from a concept corpus.
InFiConD's interface allows users to interactively fine-tune the student model by manipulating concept influences directly in the user interface.
arXiv Detail & Related papers (2024-06-25T16:56:45Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning by Distillation: A Self-Supervised Learning Framework for
Optical Flow Estimation [71.76008290101214]
DistillFlow is a knowledge distillation approach to learning optical flow.
It achieves state-of-the-art unsupervised learning performance on both KITTI and Sintel datasets.
Our models ranked 1st among all monocular methods on the KITTI 2015 benchmark, and outperform all published methods on the Sintel Final benchmark.
arXiv Detail & Related papers (2021-06-08T09:13:34Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Learning Purified Feature Representations from Task-irrelevant Labels [18.967445416679624]
We propose a novel learning framework called PurifiedLearning to exploit task-irrelevant features extracted from task-irrelevant labels.
Our work is built on solid theoretical analysis and extensive experiments, which demonstrate the effectiveness of PurifiedLearning.
arXiv Detail & Related papers (2021-02-22T12:50:49Z) - An Empirical Comparison of Deep Learning Models for Knowledge Tracing on
Large-Scale Dataset [10.329254031835953]
Knowledge tracing is a problem of modeling each student's mastery of knowledge concepts.
Recent release of large-scale student performance dataset citechoi 2019ednet motivates the analysis of performance of deep learning approaches.
arXiv Detail & Related papers (2021-01-16T04:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.