Pauli weight requirement of the matrix elements in time-evolved local operators: dependence beyond the equilibration temperature
- URL: http://arxiv.org/abs/2409.13603v1
- Date: Fri, 20 Sep 2024 16:02:19 GMT
- Title: Pauli weight requirement of the matrix elements in time-evolved local operators: dependence beyond the equilibration temperature
- Authors: Carlos Ramos-Marimón, Stefano Carignano, Luca Tagliacozzo,
- Abstract summary: We investigate whether "light" Pauli strings can be applied to quenches starting from homogeneous product states.
In some cases, the light Pauli strings suffice to describe the dynamics, enabling efficient simulation with current algorithms.
We analyze this behavior using a newly introduced measure of complexity, the Operator Weight Entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of simulating the out-of-equilibrium evolution of local operators in the Heisenberg picture is governed by the operator entanglement, which grows linearly in time for generic non-integrable systems, leading to an exponential increase in computational resources. A promising approach to simplify this challenge involves discarding parts of the operator and focusing on a subspace formed by "light" Pauli strings - strings with few Pauli matrices - as proposed by Rakovszki et al. [PRB 105, 075131 (2022)]. In this work, we investigate whether this strategy can be applied to quenches starting from homogeneous product states. For ergodic dynamics, these initial states grant access to a wide range of equilibration temperatures. By concentrating on the desired matrix elements and retaining only the portion of the operator that contains Pauli strings parallel to the initial state, we uncover a complex scenario. In some cases, the light Pauli strings suffice to describe the dynamics, enabling efficient simulation with current algorithms. However, in other cases, heavier strings become necessary, pushing computational demands beyond our current capabilities. We analyze this behavior using a newly introduced measure of complexity, the Operator Weight Entropy, which we compute for different operators across most points on the Bloch sphere.
Related papers
- Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits [3.8572128827057255]
We investigate operator dynamics and entanglement growth in dual-unitary circuits.
Our work offers a scalable computational framework for studying long-time operator evolution and entanglement.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Unified framework for efficiently computable quantum circuits [0.0]
Quantum circuits consisting of Clifford and matchgates are two classes of circuits that are known to be efficiently simulatable on a classical computer.
We introduce a unified framework that shows in a transparent way the special structure that allows these circuits can be efficiently simulatable.
arXiv Detail & Related papers (2024-01-16T08:04:28Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Operator relaxation and the optimal depth of classical shadows [0.0]
We study the sample complexity of learning the expectation value of Pauli operators via shallow shadows''
We show that the shadow norm is expressed in terms of properties of the Heisenberg time evolution of operators under the randomizing circuit.
arXiv Detail & Related papers (2022-12-22T18:46:46Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - Transforming Collections of Pauli Operators into Equivalent Collections
of Pauli Operators over Minimal Registers [0.0]
We prove the obtainable lower-bound for the number of qubits needed to represent such Pauli operations.
We provide a procedure for determining such a set of minimal register Pauli operations.
arXiv Detail & Related papers (2022-06-27T04:22:30Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Circuit optimization of Hamiltonian simulation by simultaneous
diagonalization of Pauli clusters [1.0587959762260986]
Quantum circuits for exact time evolution of single Pauli operators are well known, and can be extended trivially to sums of commuting Paulis.
In this paper we reduce the circuit complexity of Hamiltonian simulation by partitioning the Pauli operators into mutually commuting clusters.
We show that the proposed approach can help to significantly reduce both the number of CNOT operations and circuit depth for Hamiltonians arising in quantum chemistry.
arXiv Detail & Related papers (2020-03-30T16:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.