Improved Electron-Nuclear Quantum Gates for Spin Sensing and Control
- URL: http://arxiv.org/abs/2409.13610v2
- Date: Fri, 25 Oct 2024 16:07:50 GMT
- Title: Improved Electron-Nuclear Quantum Gates for Spin Sensing and Control
- Authors: H. B. van Ommen, G. L. van de Stolpe, N. Demetriou, H. K. C. Beukers, J. Yun, T. R. J. Fortuin, M. Iuliano, A. R. -P. Montblanch, R. Hanson, T. H. Taminiau,
- Abstract summary: We develop a generalised DDRF framework that has important implications for spin sensing and control.
Our analytical model, which we corroborate by experiments on a single NV center in diamond, reveals the mechanisms that govern the selectivity of gates.
We apply these insights to numerically show a 60x sensitivity enhancement for detecting weakly coupled spins.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to sense and control nuclear spins near solid-state defects might enable a range of quantum technologies. Dynamically Decoupled Radio-Frequency (DDRF) control offers a high degree of design flexibility and long electron-spin coherence times. However, previous studies considered simplified models and little is known about optimal gate design and fundamental limits. Here, we develop a generalised DDRF framework that has important implications for spin sensing and control. Our analytical model, which we corroborate by experiments on a single NV center in diamond, reveals the mechanisms that govern the selectivity of gates and their effective Rabi frequencies, and enables flexible detuned gate designs. We apply these insights to numerically show a 60x sensitivity enhancement for detecting weakly coupled spins and study the optimisation of quantum gates in multi-qubit registers. These results advance the understanding for a broad class of gates and provide a toolbox for application-specific design, enabling improved quantum control and sensing.
Related papers
- Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receiver (RAQR) is designed for receiving radio frequency (RF) signals.
RAQRs exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - Fast entangling quantum gates with almost-resonant modulated driving [7.663114782454964]
off-resonant modulated driving (ORMD) with a special category of synthetic analytical pulses has improved the experimental performance of two- and multi-qubit gates.
We design and analyze the entangling quantum gates via the almost-resonant driving (ARMD) method.
arXiv Detail & Related papers (2024-02-09T16:16:58Z) - Reinforcement learning pulses for transmon qubit entangling gates [0.0]
We utilize a continuous-control reinforcement learning algorithm to design entangling two-qubit gates for superconducting qubits.
We demonstrate the capability to generate novel pulse sequences that outperform the standard cross-resonance gates.
arXiv Detail & Related papers (2023-11-07T03:19:19Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Robust quantum control for the manipulation of solid-state spins [20.436446451643622]
Noise-resilient quantum gates are demonstrated experimentally with nitrogen-vacancy centers in diamond.
In the presence of both 10% off-resonant detuning and deviation of a Rabi frequency, we achieve an average single-qubit gate fidelity of up to 99.97%.
ROCbased multipulse quantum sensing sequences can suppress spurious responses resulting from finite widths and imperfections of microwave pulses.
arXiv Detail & Related papers (2022-05-05T04:27:47Z) - Methods and Results for Quantum Optimal Pulse Control on Superconducting
Qubit Systems [0.0]
In transmon qubit systems, the quantum gate fidelity can be improved by applying control pulses that can minimize the effects of the environmental noise.
We employ physics-guided quantum optimal control strategies to design optimal pulses driving quantum gates on superconducting qubit systems.
We show that the optimized pulses improve the fidelity of the quantum gates, in particular the single-qubit gates.
arXiv Detail & Related papers (2022-02-07T15:03:41Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.