A Bottom-Up Approach to Class-Agnostic Image Segmentation
- URL: http://arxiv.org/abs/2409.13687v1
- Date: Fri, 20 Sep 2024 17:56:02 GMT
- Title: A Bottom-Up Approach to Class-Agnostic Image Segmentation
- Authors: Sebastian Dille, Ari Blondal, Sylvain Paris, Yağız Aksoy,
- Abstract summary: We present a novel bottom-up formulation for addressing the class-agnostic segmentation problem.
We supervise our network directly on the projective sphere of its feature space.
Our bottom-up formulation exhibits exceptional generalization capability, even when trained on datasets designed for class-based segmentation.
- Score: 4.086366531569003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Class-agnostic image segmentation is a crucial component in automating image editing workflows, especially in contexts where object selection traditionally involves interactive tools. Existing methods in the literature often adhere to top-down formulations, following the paradigm of class-based approaches, where object detection precedes per-object segmentation. In this work, we present a novel bottom-up formulation for addressing the class-agnostic segmentation problem. We supervise our network directly on the projective sphere of its feature space, employing losses inspired by metric learning literature as well as losses defined in a novel segmentation-space representation. The segmentation results are obtained through a straightforward mean-shift clustering of the estimated features. Our bottom-up formulation exhibits exceptional generalization capability, even when trained on datasets designed for class-based segmentation. We further showcase the effectiveness of our generic approach by addressing the challenging task of cell and nucleus segmentation. We believe that our bottom-up formulation will offer valuable insights into diverse segmentation challenges in the literature.
Related papers
- Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
In this paper, we focus on rethinking and improving the example selection strategy.
We first demonstrate that ICL-based segmentation models are sensitive to different contexts.
Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation.
arXiv Detail & Related papers (2024-07-14T15:02:54Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
We introduce a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse.
We also introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-27T15:59:37Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
We take inspiration from traditional spectral segmentation methods by reframing image decomposition as a graph partitioning problem.
We find that these eigenvectors already decompose an image into meaningful segments, and can be readily used to localize objects in a scene.
By clustering the features associated with these segments across a dataset, we can obtain well-delineated, nameable regions.
arXiv Detail & Related papers (2022-05-16T17:47:44Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
We propose a simple yet effective approach to enforce the network to pay attention to other parts of an object.
Specifically, we perform clustering on image features to generate pseudo sub-categories labels within each annotated parent class.
We conduct extensive analysis to validate the proposed method and show that our approach performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-03T20:48:31Z) - GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation
in the Wild [23.29789882934198]
We propose a framework combining higher object-level context conditioning and part-level spatial relationships to address the task.
To tackle object-level ambiguity, a class-conditioning module is introduced to retain class-level semantics.
We also propose a novel adjacency graph-based module that aims at matching the relative spatial relationships between ground truth and predicted parts.
arXiv Detail & Related papers (2020-07-17T15:53:40Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - Unsupervised Domain Adaptation in Semantic Segmentation: a Review [22.366638308792734]
The aim of this paper is to give an overview of the recent advancements in the Unsupervised Domain Adaptation (UDA) of deep networks for semantic segmentation.
arXiv Detail & Related papers (2020-05-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.