Segment Discovery: Enhancing E-commerce Targeting
- URL: http://arxiv.org/abs/2409.13847v1
- Date: Fri, 20 Sep 2024 18:42:04 GMT
- Title: Segment Discovery: Enhancing E-commerce Targeting
- Authors: Qiqi Li, Roopali Singh, Charin Polpanumas, Tanner Fiez, Namita Kumar, Shreya Chakrabarti,
- Abstract summary: This paper proposes a policy framework based on uplift modeling and constrained optimization.
We demonstrate improvement over state-of-the-art targeting approaches using two large-scale experimental studies and a production implementation.
- Score: 8.000199536112937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern e-commerce services frequently target customers with incentives or interventions to engage them in their products such as games, shopping, video streaming, etc. This customer engagement increases acquisition of more customers and retention of existing ones, leading to more business for the company while improving customer experience. Often, customers are either randomly targeted or targeted based on the propensity of desirable behavior. However, such policies can be suboptimal as they do not target the set of customers who would benefit the most from the intervention and they may also not take account of any constraints. In this paper, we propose a policy framework based on uplift modeling and constrained optimization that identifies customers to target for a use-case specific intervention so as to maximize the value to the business, while taking account of any given constraints. We demonstrate improvement over state-of-the-art targeting approaches using two large-scale experimental studies and a production implementation.
Related papers
- Reinforcement Learning applied to Insurance Portfolio Pursuit [11.151075150673961]
We devise a novel reinforcement learning algorithm for its solution to the portfolio pursuit problem.
We test our method on a complex synthetic market environment, and demonstrate that it outperforms a baseline method.
arXiv Detail & Related papers (2024-08-01T16:58:54Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - Intent Detection at Scale: Tuning a Generic Model using Relevant Intents [0.5461938536945723]
This work proposes a system to scale intent predictions to various clients effectively, by combining a single generic model with a per-client list of relevant intents.
Our approach minimizes training and maintenance costs while providing a personalized experience for clients, allowing for seamless adaptation to changes in their relevant intents.
The final system exhibits significantly superior performance compared to industry-specific models, showcasing its flexibility and ability to cater to diverse client needs.
arXiv Detail & Related papers (2023-09-15T13:15:20Z) - A Meta-learning based Stacked Regression Approach for Customer Lifetime
Value Prediction [3.6002910014361857]
Customer Lifetime Value (CLV) is the total monetary value of transactions/purchases made by a customer with the business over an intended period of time.
CLV finds application in a number of distinct business domains such as Banking, Insurance, Online-entertainment, Gaming, and E-Commerce.
We propose a system which is able to qualify both as effective, and comprehensive yet simple and interpretable.
arXiv Detail & Related papers (2023-08-07T14:22:02Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Personalized Promotion Decision Making Based on Direct and Enduring
Effect Predictions [5.50110172922112]
We propose a framework of multiple treatment promotion decision making by modeling each customer's direct and enduring response.
First, we propose a customer direct and enduring effect (CDEE) model which predicts the customer direct and enduring response.
With the help of the CDEE, we personalize incentive allocation to optimize the enduring effect while keeping the cost under the budget.
arXiv Detail & Related papers (2022-07-23T07:13:57Z) - Influencing Long-Term Behavior in Multiagent Reinforcement Learning [59.98329270954098]
We propose a principled framework for considering the limiting policies of other agents as the time approaches infinity.
Specifically, we develop a new optimization objective that maximizes each agent's average reward by directly accounting for the impact of its behavior on the limiting set of policies that other agents will take on.
Thanks to our farsighted evaluation, we demonstrate better long-term performance than state-of-the-art baselines in various domains.
arXiv Detail & Related papers (2022-03-07T17:32:35Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
A common goal for companies marketing is to maximize the return revenue/profit by utilizing the various effective marketing strategies.
Finding credible and reliable information on products' profitability is difficult since most products tends to peak at certain times.
This paper proposes a general profit-oriented framework to address the problem of revenue based on economic behavior, and conducting the 0n-shelf Popular and most Profitable Products (OPPPs) for the targeted marketing.
arXiv Detail & Related papers (2022-02-26T02:07:25Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
We study the interplay of fairness, welfare, and equity considerations in personalized pricing based on customer features.
We show the potential benefits of personalized pricing in two settings: pricing subsidies for an elective vaccine, and the effects of personalized interest rates on downstream outcomes in microcredit.
arXiv Detail & Related papers (2020-12-21T01:01:56Z) - Dynamically Tie the Right Offer to the Right Customer in
Telecommunications Industry [0.0]
This work presents a conceptual model by studying the significant campaign-dependent variables of customer targeting.
The outcomes of customer segmentation of this study could be more meaningful and relevant for marketers.
arXiv Detail & Related papers (2020-10-18T16:44:51Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.