"I Never Said That": A dataset, taxonomy and baselines on response clarity classification
- URL: http://arxiv.org/abs/2409.13879v1
- Date: Fri, 20 Sep 2024 20:15:06 GMT
- Title: "I Never Said That": A dataset, taxonomy and baselines on response clarity classification
- Authors: Konstantinos Thomas, Giorgos Filandrianos, Maria Lymperaiou, Chrysoula Zerva, Giorgos Stamou,
- Abstract summary: We introduce a novel taxonomy that frames the task of detecting and classifying response clarity.
Our proposed two-level taxonomy addresses the clarity of a response in terms of the information provided for a given question.
We combine ChatGPT and human annotators to collect, validate and annotate discrete QA pairs from political interviews.
- Score: 4.16330182801919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Equivocation and ambiguity in public speech are well-studied discourse phenomena, especially in political science and analysis of political interviews. Inspired by the well-grounded theory on equivocation, we aim to resolve the closely related problem of response clarity in questions extracted from political interviews, leveraging the capabilities of Large Language Models (LLMs) and human expertise. To this end, we introduce a novel taxonomy that frames the task of detecting and classifying response clarity and a corresponding clarity classification dataset which consists of question-answer (QA) pairs drawn from political interviews and annotated accordingly. Our proposed two-level taxonomy addresses the clarity of a response in terms of the information provided for a given question (high-level) and also provides a fine-grained taxonomy of evasion techniques that relate to unclear, ambiguous responses (lower-level). We combine ChatGPT and human annotators to collect, validate and annotate discrete QA pairs from political interviews, to be used for our newly introduced response clarity task. We provide a detailed analysis and conduct several experiments with different model architectures, sizes and adaptation methods to gain insights and establish new baselines over the proposed dataset and task.
Related papers
- AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers [40.80290002598963]
This study explores the potential of replacing human interviewers with large language models (LLMs) to conduct scalable conversational interviews.
We conducted a small-scale, in-depth study with university students who were randomly assigned to be interviewed by either AI or human interviewers.
Various quantitative and qualitative measures assessed interviewer adherence to guidelines, response quality, participant engagement, and overall interview efficacy.
arXiv Detail & Related papers (2024-09-16T16:03:08Z) - Automated Speaking Assessment of Conversation Tests with Novel Graph-based Modeling on Spoken Response Coherence [11.217656140423207]
ASAC aims to evaluate the overall speaking proficiency of an L2 speaker in a setting where an interlocutor interacts with one or more candidates.
We propose a hierarchical graph model that aptly incorporates both broad inter-response interactions and nuanced semantic information.
Extensive experimental results on the NICT-JLE benchmark dataset suggest that our proposed modeling approach can yield considerable improvements in prediction accuracy.
arXiv Detail & Related papers (2024-09-11T07:24:07Z) - PAQA: Toward ProActive Open-Retrieval Question Answering [34.883834970415734]
This work aims to tackle the challenge of generating relevant clarifying questions by taking into account the inherent ambiguities present in both user queries and documents.
We propose PAQA, an extension to the existing AmbiNQ dataset, incorporating clarifying questions.
We then evaluate various models and assess how passage retrieval impacts ambiguity detection and the generation of clarifying questions.
arXiv Detail & Related papers (2024-02-26T14:40:34Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
We present the first dataset specifically constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires.
We conduct experiments on Qsnail, and the results reveal that retrieval models and traditional generative models do not fully align with the given research topic and intents.
Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by language models still fall short of human-written questionnaires.
arXiv Detail & Related papers (2024-02-22T04:14:10Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
We propose a novel task for knowledge-driven follow-up question generation in conversational surveys.
We constructed a new human-annotated dataset of human-written follow-up questions with dialogue history and labeled knowledge.
We then propose a two-staged knowledge-driven model for the task, which generates informative and coherent follow-up questions.
arXiv Detail & Related papers (2022-05-23T00:57:33Z) - Asking Complex Questions with Multi-hop Answer-focused Reasoning [16.01240703148773]
We propose a new task called multihop question generation that asks complex and semantically relevant questions.
To solve the problem, we propose multi-hop answer-focused reasoning on the grounded answer-centric entity graph.
arXiv Detail & Related papers (2020-09-16T00:30:49Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Analysing the Effect of Clarifying Questions on Document Ranking in
Conversational Search [10.335808358080289]
We investigate how different aspects of clarifying questions and user answers affect the quality of ranking.
We introduce a simple-based lexical baseline, that significantly outperforms the existing naive baselines.
arXiv Detail & Related papers (2020-08-09T12:55:16Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z) - Visual Question Answering with Prior Class Semantics [50.845003775809836]
We show how to exploit additional information pertaining to the semantics of candidate answers.
We extend the answer prediction process with a regression objective in a semantic space.
Our method brings improvements in consistency and accuracy over a range of question types.
arXiv Detail & Related papers (2020-05-04T02:46:31Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
Multi-choice machine reading comprehension (MRC) requires models to choose the correct answer from candidate options given a passage and a question.
Our research focuses dialogue-based MRC, where the passages are multi-turn dialogues.
It suffers from two challenges, the answer selection decision is made without support of latently helpful commonsense, and the multi-turn context may hide considerable irrelevant information.
arXiv Detail & Related papers (2020-04-29T07:04:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.