OneBEV: Using One Panoramic Image for Bird's-Eye-View Semantic Mapping
- URL: http://arxiv.org/abs/2409.13912v1
- Date: Fri, 20 Sep 2024 21:33:53 GMT
- Title: OneBEV: Using One Panoramic Image for Bird's-Eye-View Semantic Mapping
- Authors: Jiale Wei, Junwei Zheng, Ruiping Liu, Jie Hu, Jiaming Zhang, Rainer Stiefelhagen,
- Abstract summary: OneBEV is a novel BEV semantic mapping approach using merely a single panoramic image as input.
A distortion-aware module termed Mamba View Transformation (MVT) is specifically designed to handle the spatial distortions in panoramas.
This work advances BEV semantic mapping in autonomous driving, paving the way for more advanced and reliable autonomous systems.
- Score: 25.801868221496473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of autonomous driving, Bird's-Eye-View (BEV) perception has attracted increasing attention in the community since it provides more comprehensive information compared with pinhole front-view images and panoramas. Traditional BEV methods, which rely on multiple narrow-field cameras and complex pose estimations, often face calibration and synchronization issues. To break the wall of the aforementioned challenges, in this work, we introduce OneBEV, a novel BEV semantic mapping approach using merely a single panoramic image as input, simplifying the mapping process and reducing computational complexities. A distortion-aware module termed Mamba View Transformation (MVT) is specifically designed to handle the spatial distortions in panoramas, transforming front-view features into BEV features without leveraging traditional attention mechanisms. Apart from the efficient framework, we contribute two datasets, i.e., nuScenes-360 and DeepAccident-360, tailored for the OneBEV task. Experimental results showcase that OneBEV achieves state-of-the-art performance with 51.1% and 36.1% mIoU on nuScenes-360 and DeepAccident-360, respectively. This work advances BEV semantic mapping in autonomous driving, paving the way for more advanced and reliable autonomous systems.
Related papers
- DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - M-BEV: Masked BEV Perception for Robust Autonomous Driving [30.110634411996404]
Bird-Eye-View (BEV) has attracted extensive attention, due to low-cost deployment and desirable vision detection capacity.
Existing models ignore a realistic scenario during the driving procedure, which largely deteriorates the performance.
We propose a generic Masked BEV (M-BEV) perception framework, which can effectively improve robustness to this challenging scenario.
arXiv Detail & Related papers (2023-12-19T13:25:45Z) - Multi-camera Bird's Eye View Perception for Autonomous Driving [17.834495597639805]
It is essential to produce perception outputs in 3D to enable the spatial reasoning of other agents and structures.
The most basic approach to achieving the desired BEV representation from a camera image is IPM, assuming a flat ground surface.
More recent approaches use deep neural networks to output directly in BEV space.
arXiv Detail & Related papers (2023-09-16T19:12:05Z) - FB-BEV: BEV Representation from Forward-Backward View Transformations [131.11787050205697]
We propose a novel View Transformation Module (VTM) for Bird-Eye-View (BEV) representation.
We instantiate the proposed module with FB-BEV, which achieves a new state-of-the-art result of 62.4% NDS on the nuScenes test set.
arXiv Detail & Related papers (2023-08-04T10:26:55Z) - SA-BEV: Generating Semantic-Aware Bird's-Eye-View Feature for Multi-view
3D Object Detection [46.92706423094971]
We propose Semantic-Aware BEV Pooling (SA-BEVPool), which can filter out background information according to the semantic segmentation of image features.
We also propose BEV-Paste, an effective data augmentation strategy that closely matches with semantic-aware BEV feature.
Experiments on nuScenes show that SA-BEV achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-21T10:28:19Z) - An Efficient Transformer for Simultaneous Learning of BEV and Lane
Representations in 3D Lane Detection [55.281369497158515]
We propose an efficient transformer for 3D lane detection.
Different from the vanilla transformer, our model contains a cross-attention mechanism to simultaneously learn lane and BEV representations.
Our method obtains 2D and 3D lane predictions by applying the lane features to the image-view and BEV features, respectively.
arXiv Detail & Related papers (2023-06-08T04:18:31Z) - 360BEV: Panoramic Semantic Mapping for Indoor Bird's-Eye View [38.10346176323481]
Bird's-eye-view (BEV) perception is restricted when using a narrow Field of View (FoV) alone.
360BEV task is established for the first time to achieve holistic representations of indoor scenes in a top-down view.
arXiv Detail & Related papers (2023-03-21T15:01:02Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
We introduce BEVFusion, a generic multi-task multi-sensor fusion framework.
It unifies multi-modal features in the shared bird's-eye view representation space.
It achieves 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower cost.
arXiv Detail & Related papers (2022-05-26T17:59:35Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEV is a unified framework that jointly performs 3D object detection and map segmentation.
M$2$BEV infers both tasks with a unified model and improves efficiency.
arXiv Detail & Related papers (2022-04-11T13:43:25Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
We present the first end-to-end learning approach for directly predicting dense panoptic segmentation maps in the Bird's-Eye-View (BEV) maps.
Our architecture follows the top-down paradigm and incorporates a novel dense transformer module.
We derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space.
arXiv Detail & Related papers (2021-08-06T17:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.