Improving 3D Semi-supervised Learning by Effectively Utilizing All Unlabelled Data
- URL: http://arxiv.org/abs/2409.13977v1
- Date: Sat, 21 Sep 2024 01:53:52 GMT
- Title: Improving 3D Semi-supervised Learning by Effectively Utilizing All Unlabelled Data
- Authors: Sneha Paul, Zachary Patterson, Nizar Bouguila,
- Abstract summary: Semi-supervised learning (SSL) has shown its effectiveness in learning effective 3D representation from a small amount of labelled data.
We propose AllMatch, a novel SSL-based 3D classification framework that effectively utilizes all the unlabelled samples.
- Score: 21.015491263215786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning (SSL) has shown its effectiveness in learning effective 3D representation from a small amount of labelled data while utilizing large unlabelled data. Traditional semi-supervised approaches rely on the fundamental concept of predicting pseudo-labels for unlabelled data and incorporating them into the learning process. However, we identify that the existing methods do not fully utilize all the unlabelled samples and consequently limit their potential performance. To address this issue, we propose AllMatch, a novel SSL-based 3D classification framework that effectively utilizes all the unlabelled samples. AllMatch comprises three modules: (1) an adaptive hard augmentation module that applies relatively hard augmentations to the high-confident unlabelled samples with lower loss values, thereby enhancing the contribution of such samples, (2) an inverse learning module that further improves the utilization of unlabelled data by learning what not to learn, and (3) a contrastive learning module that ensures learning from all the samples in both supervised and unsupervised settings. Comprehensive experiments on two popular 3D datasets demonstrate a performance improvement of up to 11.2% with 1% labelled data, surpassing the SOTA by a significant margin. Furthermore, AllMatch exhibits its efficiency in effectively leveraging all the unlabelled data, demonstrated by the fact that only 10% of labelled data reaches nearly the same performance as fully-supervised learning with all labelled data. The code of our work is available at: https://github.com/snehaputul/AllMatch.
Related papers
- MaskMatch: Boosting Semi-Supervised Learning Through Mask Autoencoder-Driven Feature Learning [8.255082589733673]
algo is a novel algorithm that fully utilizes unlabeled data to boost semi-supervised learning.
algo integrates a self-supervised learning strategy, i.e., Masked Autoencoder (MAE), that uses all available data to enforce the visual representation learning.
algo achieves low error rates of 18.71%, 9.47%, and 3.07%, respectively, on challenging datasets.
arXiv Detail & Related papers (2024-05-10T03:39:54Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - Scaling Up Semi-supervised Learning with Unconstrained Unlabelled Data [27.75143621836449]
We propose UnMixMatch, a semi-supervised learning framework which can learn effective representations from unconstrained data.
We perform extensive experiments on 4 commonly used datasets and demonstrate superior performance over existing semi-supervised methods with a performance boost of 4.79%.
arXiv Detail & Related papers (2023-06-02T01:07:14Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set
Unlabeled Data [65.19205979542305]
Unlabeled data may include out-of-class samples in practice.
OpenCoS is a method for handling this realistic semi-supervised learning scenario.
arXiv Detail & Related papers (2021-06-29T06:10:05Z) - Rethinking Curriculum Learning with Incremental Labels and Adaptive
Compensation [35.593312267921256]
Like humans, deep networks have been shown to learn better when samples are organized and introduced in a meaningful order or curriculum.
We propose Learning with Incremental Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally increases the number of unique output labels.
arXiv Detail & Related papers (2020-01-13T21:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.