BrainDreamer: Reasoning-Coherent and Controllable Image Generation from EEG Brain Signals via Language Guidance
- URL: http://arxiv.org/abs/2409.14021v1
- Date: Sat, 21 Sep 2024 05:16:31 GMT
- Title: BrainDreamer: Reasoning-Coherent and Controllable Image Generation from EEG Brain Signals via Language Guidance
- Authors: Ling Wang, Chen Wu, Lin Wang,
- Abstract summary: We introduce BrainDreamer, a novel end-to-end language-guided generative framework.
BrainDreamer can mimic human reasoning and generate high-quality images from electroencephalogram (EEG) brain signals.
Our method is superior in its capacity to eliminate the noise introduced by non-invasive EEG data acquisition.
- Score: 14.003870853594972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we directly visualize what we imagine in our brain together with what we describe? The inherent nature of human perception reveals that, when we think, our body can combine language description and build a vivid picture in our brain. Intuitively, generative models should also hold such versatility. In this paper, we introduce BrainDreamer, a novel end-to-end language-guided generative framework that can mimic human reasoning and generate high-quality images from electroencephalogram (EEG) brain signals. Our method is superior in its capacity to eliminate the noise introduced by non-invasive EEG data acquisition and meanwhile achieve a more precise mapping between the EEG and image modality, thus leading to significantly better-generated images. Specifically, BrainDreamer consists of two key learning stages: 1) modality alignment and 2) image generation. In the alignment stage, we propose a novel mask-based triple contrastive learning strategy to effectively align EEG, text, and image embeddings to learn a unified representation. In the generation stage, we inject the EEG embeddings into the pre-trained Stable Diffusion model by designing a learnable EEG adapter to generate high-quality reasoning-coherent images. Moreover, BrainDreamer can accept textual descriptions (e.g., color, position, etc.) to achieve controllable image generation. Extensive experiments show that our method significantly outperforms prior arts in terms of generating quality and quantitative performance.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
This paper introduces a MUltimodal Similarity-keeping contrastivE learning framework for zero-shot EEG-based image classification.
We develop a series of multivariate time-series encoders tailored for EEG signals and assess the efficacy of regularized contrastive EEG-Image pretraining.
Our method achieves state-of-the-art performance, with a top-1 accuracy of 19.3% and a top-5 accuracy of 48.8% in 200-way zero-shot image classification.
arXiv Detail & Related papers (2024-06-05T16:42:23Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction [7.512223286737468]
Analyzing and reconstructing visual stimuli from brain signals effectively advances the understanding of human visual system.
However, the EEG signals are complex and contain significant noise.
This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG.
We propose a novel approach called BrainVis to address these challenges.
arXiv Detail & Related papers (2023-12-22T17:49:11Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations.
We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures.
We propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation.
arXiv Detail & Related papers (2023-10-25T10:26:07Z) - BiomedJourney: Counterfactual Biomedical Image Generation by
Instruction-Learning from Multimodal Patient Journeys [99.7082441544384]
We present BiomedJourney, a novel method for counterfactual biomedical image generation by instruction-learning.
We use GPT-4 to process the corresponding imaging reports and generate a natural language description of disease progression.
The resulting triples are then used to train a latent diffusion model for counterfactual biomedical image generation.
arXiv Detail & Related papers (2023-10-16T18:59:31Z) - Seeing through the Brain: Image Reconstruction of Visual Perception from
Human Brain Signals [27.92796103924193]
We propose a comprehensive pipeline, named NeuroImagen, for reconstructing visual stimuli images from EEG signals.
We incorporate a novel multi-level perceptual information decoding to draw multi-grained outputs from the given EEG data.
arXiv Detail & Related papers (2023-07-27T12:54:16Z) - DreamDiffusion: Generating High-Quality Images from Brain EEG Signals [42.30835251506628]
DreamDiffusion is a novel method for generating high-quality images directly from brain electroencephalogram (EEG) signals.
The proposed method overcomes the challenges of using EEG signals for image generation, such as noise, limited information, and individual differences.
arXiv Detail & Related papers (2023-06-29T13:33:02Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
We propose a self-supervised learning paradigm with multi-modal masked autoencoders.
We learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts.
arXiv Detail & Related papers (2022-09-15T07:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.