Co-occurrence is not Factual Association in Language Models
- URL: http://arxiv.org/abs/2409.14057v1
- Date: Sat, 21 Sep 2024 08:13:16 GMT
- Title: Co-occurrence is not Factual Association in Language Models
- Authors: Xiao Zhang, Miao Li, Ji Wu,
- Abstract summary: We show that language models are biased to learn word co-occurrence statistics instead of true factual associations.
We propose two strategies to improve the learning of factual associations in language models.
- Score: 19.708303468664088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained language models can encode a large amount of knowledge and utilize it for various reasoning tasks, yet they can still struggle to learn novel factual knowledge effectively from finetuning on limited textual demonstrations. In this work, we show that the reason for this deficiency is that language models are biased to learn word co-occurrence statistics instead of true factual associations. We identify the differences between two forms of knowledge representation in language models: knowledge in the form of co-occurrence statistics is encoded in the middle layers of the transformer model and does not generalize well to reasoning scenarios beyond simple question answering, while true factual associations are encoded in the lower layers and can be freely utilized in various reasoning tasks. Based on these observations, we propose two strategies to improve the learning of factual associations in language models. We show that training on text with implicit rather than explicit factual associations can force the model to learn factual associations instead of co-occurrence statistics, significantly improving the generalization of newly learned knowledge. We also propose a simple training method to actively forget the learned co-occurrence statistics, which unblocks and enhances the learning of factual associations when training on plain narrative text. On both synthetic and real-world corpora, the two proposed strategies improve the generalization of the knowledge learned during finetuning to reasoning scenarios such as indirect and multi-hop question answering.
Related papers
- BiasKG: Adversarial Knowledge Graphs to Induce Bias in Large Language Models [19.446333438385153]
We propose a new methodology for attacking language models with knowledge graph augmented generation.
We induce natural language stereotypes into a knowledge graph, and use adversarial attacking strategies.
We find our method increases bias in all models, even those trained with safety guardrails.
arXiv Detail & Related papers (2024-05-08T01:51:29Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.
If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.
To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
We introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model.
It then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction.
arXiv Detail & Related papers (2023-06-04T15:44:51Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
Large-scale pre-trained language models have shown remarkable memorizing ability.
Vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem.
We find that 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation.
arXiv Detail & Related papers (2023-05-16T03:50:38Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
Large language models (LLMs) encode parametric knowledge about world facts.
Their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks.
We assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention.
arXiv Detail & Related papers (2023-03-20T17:54:58Z) - Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence
Reasoning [8.990338162517086]
We describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models.
By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias.
arXiv Detail & Related papers (2023-03-10T02:52:13Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.