OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength
- URL: http://arxiv.org/abs/2409.14433v1
- Date: Sun, 22 Sep 2024 13:16:07 GMT
- Title: OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength
- Authors: Le Yang, Ziwei Zheng, Yizeng Han, Shiji Song, Gao Huang, Fan Li,
- Abstract summary: Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search.
DARTS suffers from the well-known degeneration issue which can lead to deteriorating architectures.
We propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss.
- Score: 70.76342136866413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search, and it mainly contains two steps to find the high-performance architecture: First, the DARTS supernet that consists of mixed operations will be optimized via gradient descent. Second, the final architecture will be built by the selected operations that contribute the most to the supernet. Although DARTS improves the efficiency of NAS, it suffers from the well-known degeneration issue which can lead to deteriorating architectures. Existing works mainly attribute the degeneration issue to the failure of its supernet optimization, while little attention has been paid to the selection method. In this paper, we cease to apply the widely-used magnitude-based selection method and propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss. We show that the degeneration issue can be effectively addressed by using the proposed criterion without any modification of supernet optimization, indicating that the magnitude-based selection method can be a critical reason for the instability of DARTS. The experiments on NAS-Bench-201 and DARTS search spaces show the effectiveness of our method.
Related papers
- $\Lambda$-DARTS: Mitigating Performance Collapse by Harmonizing
Operation Selection among Cells [11.777101481512423]
Differentiable neural architecture search (DARTS) is a popular method for neural architecture search (NAS)
We show that DARTS suffers from a specific structural flaw due to its weight-sharing framework that limits the convergence of DARTS to saturation points of the softmax function.
We propose two new regularization terms that aim to prevent performance collapse by harmonizing operation selection via aligning gradients of layers.
arXiv Detail & Related papers (2022-10-14T17:54:01Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
We propose a simple-but-efficient regularization method, termed as Beta-Decay, to regularize the DARTS-based NAS searching process.
Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets.
arXiv Detail & Related papers (2022-03-03T11:47:14Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency.
This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation.
In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue.
arXiv Detail & Related papers (2021-10-10T09:35:15Z) - DARTS for Inverse Problems: a Study on Hyperparameter Sensitivity [21.263326724329698]
Differentiable architecture search (DARTS) is a widely researched tool for neural architecture search.
We report the results of any DARTS-based methods from several runs along with its underlying performance statistics.
arXiv Detail & Related papers (2021-08-12T10:28:02Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - RARTS: An Efficient First-Order Relaxed Architecture Search Method [5.491655566898372]
Differentiable architecture search (DARTS) is an effective method for data-driven neural network design based on solving a bilevel optimization problem.
We formulate a single level alternative and a relaxed architecture search (RARTS) method that utilizes the whole dataset in architecture learning via both data and network splitting.
For the task of searching topological architecture, i.e., the edges and the operations, RARTS obtains a higher accuracy and 60% reduction of computational cost than second-order DARTS on CIFAR-10.
arXiv Detail & Related papers (2020-08-10T04:55:51Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.