EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models
- URL: http://arxiv.org/abs/2409.14595v1
- Date: Sun, 22 Sep 2024 21:08:37 GMT
- Title: EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models
- Authors: Hossein Rajabzadeh, Aref Jafari, Aman Sharma, Benyamin Jami, Hyock Ju Kwon, Ali Ghodsi, Boxing Chen, Mehdi Rezagholizadeh,
- Abstract summary: Large Language Models (LLMs) have demonstrated outstanding performance across a variety of natural language processing tasks.
We introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers.
Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15%, training speed by 25%, and reduces the number of parameters by approximately 4%, all while improving zero-shot performance.
- Score: 29.57891007810509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), with their increasing depth and number of parameters, have demonstrated outstanding performance across a variety of natural language processing tasks. However, this growth in scale leads to increased computational demands, particularly during inference and fine-tuning. To address these challenges, we introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers. Our analysis reveals that many inner layers in LLMs, especially larger ones, exhibit highly similar attention matrices. By exploiting this similarity, EchoAtt enables the sharing of attention matrices in less critical layers, significantly reducing computational requirements without compromising performance. We incorporate this approach within a knowledge distillation setup, where a pre-trained teacher model guides the training of a smaller student model. The student model selectively shares attention matrices in layers with high similarity while inheriting key parameters from the teacher. Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15\%, training speed by 25\%, and reduces the number of parameters by approximately 4\%, all while improving zero-shot performance. These findings highlight the potential of attention matrix sharing to enhance the efficiency of LLMs, making them more practical for real-time and resource-limited applications.
Related papers
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
This study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to feedforward networks (FFNs)
Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$times$ FFN speed-up with 32% parameters) and effective during training.
Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance.
arXiv Detail & Related papers (2024-07-13T10:08:55Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
We identify more efficient alternatives to dense matrices, as exemplified by the success of convolutional networks in the image domain.
We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance.
We propose a novel matrix family containing Monarch matrices, the Block-Train, which we show performs better than dense for the same compute on multiple tasks.
arXiv Detail & Related papers (2024-06-10T13:25:43Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
We show that it is possible to significantly improve the performance of Large Language Models by selectively removing higher-order components of their weight matrices.
This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed.
We show extensive experiments demonstrating the generality of this finding across language models and datasets.
arXiv Detail & Related papers (2023-12-21T03:51:08Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Multi-View Attention Transfer for Efficient Speech Enhancement [1.6932706284468382]
We propose multi-view attention transfer (MV-AT), a feature-based distillation, to obtain efficient speech enhancement models in the time domain.
Based on the multi-view features extraction model, MV-AT transfers multi-view knowledge of the teacher network to the student network without additional parameters.
arXiv Detail & Related papers (2022-08-22T14:47:47Z) - Rethinking Attention Mechanism in Time Series Classification [6.014777261874646]
We promote the efficiency and performance of the attention mechanism by proposing our flexible multi-head linear attention (FMLA)
We propose a simple but effective mask mechanism that helps reduce the noise influence in time series and decrease the redundancy of the proposed FMLA.
We conduct extensive experiments on 85 UCR2018 datasets to compare our algorithm with 11 well-known ones and the results show that our algorithm has comparable performance in terms of top-1 accuracy.
arXiv Detail & Related papers (2022-07-14T07:15:06Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.