TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation
- URL: http://arxiv.org/abs/2409.14676v2
- Date: Wed, 25 Sep 2024 08:03:46 GMT
- Title: TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation
- Authors: Yanlin Wu, Tao Li, Zhihong Wang, Hong Kang, Along He,
- Abstract summary: U-Net is currently the most widely used architecture for medical image segmentation.
We have improved the KAN to reduce memory usage and computational load.
This approach enhances the model's capability to capture nonlinear relationships.
- Score: 5.280523424712006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: U-Net is currently the most widely used architecture for medical image segmentation. Benefiting from its unique encoder-decoder architecture and skip connections, it can effectively extract features from input images to segment target regions. The commonly used U-Net is typically based on convolutional operations or Transformers, modeling the dependencies between local or global information to accomplish medical image analysis tasks. However, convolutional layers, fully connected layers, and attention mechanisms used in this process introduce a significant number of parameters, often requiring the stacking of network layers to model complex nonlinear relationships, which can impact the training process. To address these issues, we propose TransUKAN. Specifically, we have improved the KAN to reduce memory usage and computational load. On this basis, we explored an effective combination of KAN, Transformer, and U-Net structures. This approach enhances the model's capability to capture nonlinear relationships by introducing only a small number of additional parameters and compensates for the Transformer structure's deficiency in local information extraction. We validated TransUKAN on multiple medical image segmentation tasks. Experimental results demonstrate that TransUKAN achieves excellent performance with significantly reduced parameters. The code will be available athttps://github.com/wuyanlin-wyl/TransUKAN.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
We propose an advanced 2D feature extraction method by combining the convolutional neural network and Transformer architectures.
Our method is shown with better segmentation accuracy, especially on small organs.
arXiv Detail & Related papers (2024-01-27T05:58:36Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - TransNorm: Transformer Provides a Strong Spatial Normalization Mechanism
for a Deep Segmentation Model [4.320393382724066]
convolutional neural networks (CNNs) have been the prevailing technique in the medical image processing era.
We propose Trans-Norm, a novel deep segmentation framework which consolidates a Transformer module into both encoder and skip-connections of the standard U-Net.
arXiv Detail & Related papers (2022-07-27T09:54:10Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.