AIM 2024 Challenge on Video Saliency Prediction: Methods and Results
- URL: http://arxiv.org/abs/2409.14827v1
- Date: Mon, 23 Sep 2024 08:59:22 GMT
- Title: AIM 2024 Challenge on Video Saliency Prediction: Methods and Results
- Authors: Andrey Moskalenko, Alexey Bryncev, Dmitry Vatolin, Radu Timofte, Gen Zhan, Li Yang, Yunlong Tang, Yiting Liao, Jiongzhi Lin, Baitao Huang, Morteza Moradi, Mohammad Moradi, Francesco Rundo, Concetto Spampinato, Ali Borji, Simone Palazzo, Yuxin Zhu, Yinan Sun, Huiyu Duan, Yuqin Cao, Ziheng Jia, Qiang Hu, Xiongkuo Min, Guangtao Zhai, Hao Fang, Runmin Cong, Xiankai Lu, Xiaofei Zhou, Wei Zhang, Chunyu Zhao, Wentao Mu, Tao Deng, Hamed R. Tavakoli,
- Abstract summary: This paper reviews the Challenge on Video Saliency Prediction at AIM 2024.
The goal of the participants was to develop a method for predicting accurate saliency maps for the provided set of video sequences.
- Score: 105.09572982350532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reviews the Challenge on Video Saliency Prediction at AIM 2024. The goal of the participants was to develop a method for predicting accurate saliency maps for the provided set of video sequences. Saliency maps are widely exploited in various applications, including video compression, quality assessment, visual perception studies, the advertising industry, etc. For this competition, a previously unused large-scale audio-visual mouse saliency (AViMoS) dataset of 1500 videos with more than 70 observers per video was collected using crowdsourced mouse tracking. The dataset collection methodology has been validated using conventional eye-tracking data and has shown high consistency. Over 30 teams registered in the challenge, and there are 7 teams that submitted the results in the final phase. The final phase solutions were tested and ranked by commonly used quality metrics on a private test subset. The results of this evaluation and the descriptions of the solutions are presented in this report. All data, including the private test subset, is made publicly available on the challenge homepage - https://challenges.videoprocessing.ai/challenges/video-saliency-prediction.html.
Related papers
- AIM 2024 Challenge on Video Super-Resolution Quality Assessment: Methods and Results [76.64868221556145]
This paper presents the Video Super-Resolution (SR) Quality Assessment (QA) Challenge that was part of the Advances in Image Manipulation (AIM) workshop.
The task of this challenge was to develop an objective QA method for videos upscaled 2x and 4x by modern image- and video-SR algorithms.
The goal was to advance the state-of-the-art in SR QA, which had proven to be a challenging problem with limited applicability of traditional QA methods.
arXiv Detail & Related papers (2024-10-05T16:42:23Z) - AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results [120.95863275142727]
This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024.
The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos encoded with 14 codecs of various compression standards.
arXiv Detail & Related papers (2024-08-21T20:32:45Z) - NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment: Methods and Results [216.73187673659675]
This paper reviews the NTIRE 2024 Challenge on Shortform Video Quality Assessment (S-UGC VQA)
The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing.
The purpose is to build new benchmarks and advance the development of S-UGC VQA.
arXiv Detail & Related papers (2024-04-17T12:26:13Z) - NTIRE 2023 Quality Assessment of Video Enhancement Challenge [97.809937484099]
This paper reports on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge.
The challenge is to address a major challenge in the field of video processing, namely, video quality assessment (VQA) for enhanced videos.
The challenge has a total of 167 registered participants.
arXiv Detail & Related papers (2023-07-19T02:33:42Z) - AIM 2019 Challenge on Video Temporal Super-Resolution: Methods and
Results [129.15554076593762]
This paper reviews the first AIM challenge on video temporal super-resolution (frame)
From low-frame-rate (15 fps) video sequences, the challenge participants are asked to submit higher-framerate (60 fps) video sequences.
We employ the REDS VTSR dataset derived from diverse videos captured in a hand-held camera for training and evaluation purposes.
arXiv Detail & Related papers (2020-05-04T01:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.