Enabling Tensor Decomposition for Time-Series Classification via A Simple Pseudo-Laplacian Contrast
- URL: http://arxiv.org/abs/2409.15200v1
- Date: Mon, 23 Sep 2024 16:48:13 GMT
- Title: Enabling Tensor Decomposition for Time-Series Classification via A Simple Pseudo-Laplacian Contrast
- Authors: Man Li, Ziyue Li, Lijun Sun, Fugee Tsung,
- Abstract summary: We propose a novel Pseudo Laplacian Contrast (PLC) tensor decomposition framework.
It integrates the data augmentation and cross-view Laplacian to enable the extraction of class-aware representations.
Experiments on various datasets demonstrate the effectiveness of our approach.
- Score: 26.28414569796961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor decomposition has emerged as a prominent technique to learn low-dimensional representation under the supervision of reconstruction error, primarily benefiting data inference tasks like completion and imputation, but not classification task. We argue that the non-uniqueness and rotation invariance of tensor decomposition allow us to identify the directions with largest class-variability and simple graph Laplacian can effectively achieve this objective. Therefore we propose a novel Pseudo Laplacian Contrast (PLC) tensor decomposition framework, which integrates the data augmentation and cross-view Laplacian to enable the extraction of class-aware representations while effectively capturing the intrinsic low-rank structure within reconstruction constraint. An unsupervised alternative optimization algorithm is further developed to iteratively estimate the pseudo graph and minimize the loss using Alternating Least Square (ALS). Extensive experimental results on various datasets demonstrate the effectiveness of our approach.
Related papers
- Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
We present intrinsic neural radiance fields, dubbed IntrinsicNeRF, which introduce intrinsic decomposition into the NeRF-based neural rendering method.
Our experiments and editing samples on both object-specific/room-scale scenes and synthetic/real-word data demonstrate that we can obtain consistent intrinsic decomposition results.
arXiv Detail & Related papers (2022-10-02T22:45:11Z) - Supervised Dimensionality Reduction and Classification with
Convolutional Autoencoders [1.1164202369517053]
A Convolutional Autoencoder is combined to simultaneously produce supervised dimensionality reduction and predictions.
The resulting Latent Space can be utilized to improve traditional, interpretable classification algorithms.
The proposed methodology introduces advanced explainability regarding, not only the data structure through the produced latent space, but also about the classification behaviour.
arXiv Detail & Related papers (2022-08-25T15:18:33Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
This paper tackles tensor robust principal component analysis (RPCA)
It aims to recover a low-rank tensor from its observations contaminated by sparse corruptions.
We show that the proposed algorithm achieves better and more scalable performance than state-of-the-art matrix and tensor RPCA algorithms.
arXiv Detail & Related papers (2022-06-18T04:01:32Z) - End-to-end reconstruction meets data-driven regularization for inverse
problems [2.800608984818919]
We propose an unsupervised approach for learning end-to-end reconstruction operators for ill-posed inverse problems.
The proposed method combines the classical variational framework with iterative unrolling.
We demonstrate with the example of X-ray computed tomography (CT) that our approach outperforms state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-06-07T12:05:06Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Alternating minimization algorithms for graph regularized tensor
completion [8.26185178671935]
We consider a Canonical Polyadic (CP) decomposition approach to low-rank tensor completion (LRTC)
The usage of graph regularization entails benefits in the learning accuracy of LRTC, but at the same time, induces coupling graph Laplacian terms.
We propose efficient alternating minimization algorithms by leveraging the block structure of the underlying CP decomposition-based model.
arXiv Detail & Related papers (2020-08-28T23:20:49Z) - Robust Tensor Decomposition for Image Representation Based on
Generalized Correntropy [37.968665739578185]
We propose a new robust tensor decomposition method using generalized correntropy criterion (Corr-Tensor)
A Lagrange multiplier method is used to effectively optimize the generalized correntropy objective function in an iterative manner.
Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracies on handwritten digit recognition and facial image clustering.
arXiv Detail & Related papers (2020-05-10T08:46:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.