Training Data Attribution: Was Your Model Secretly Trained On Data Created By Mine?
- URL: http://arxiv.org/abs/2409.15781v1
- Date: Tue, 24 Sep 2024 06:23:43 GMT
- Title: Training Data Attribution: Was Your Model Secretly Trained On Data Created By Mine?
- Authors: Likun Zhang, Hao Wu, Lingcui Zhang, Fengyuan Xu, Jin Cao, Fenghua Li, Ben Niu,
- Abstract summary: We propose an injection-free training data attribution method for text-to-image models.
Our approach involves developing algorithms to uncover distinct samples and using them as inherent watermarks.
Our experiments demonstrate that our method achieves an accuracy of over 80% in identifying the source of a suspicious model's training data.
- Score: 17.714589429503675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of text-to-image models has recently sparked significant interest, but the attendant is a looming shadow of potential infringement by violating the user terms. Specifically, an adversary may exploit data created by a commercial model to train their own without proper authorization. To address such risk, it is crucial to investigate the attribution of a suspicious model's training data by determining whether its training data originates, wholly or partially, from a specific source model. To trace the generated data, existing methods require applying extra watermarks during either the training or inference phases of the source model. However, these methods are impractical for pre-trained models that have been released, especially when model owners lack security expertise. To tackle this challenge, we propose an injection-free training data attribution method for text-to-image models. It can identify whether a suspicious model's training data stems from a source model, without additional modifications on the source model. The crux of our method lies in the inherent memorization characteristic of text-to-image models. Our core insight is that the memorization of the training dataset is passed down through the data generated by the source model to the model trained on that data, making the source model and the infringing model exhibit consistent behaviors on specific samples. Therefore, our approach involves developing algorithms to uncover these distinct samples and using them as inherent watermarks to verify if a suspicious model originates from the source model. Our experiments demonstrate that our method achieves an accuracy of over 80\% in identifying the source of a suspicious model's training data, without interfering the original training or generation process of the source model.
Related papers
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
New personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles.
Such a lightweight solution poses a new concern regarding whether the personalized models are trained from unauthorized data.
We introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-14T12:29:23Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - Tools for Verifying Neural Models' Training Data [29.322899317216407]
"Proof-of-Training-Data" allows a model trainer to convince a Verifier of the training data that produced a set of model weights.
We show experimentally that our verification procedures can catch a wide variety of attacks.
arXiv Detail & Related papers (2023-07-02T23:27:00Z) - Quantifying Sample Anonymity in Score-Based Generative Models with
Adversarial Fingerprinting [3.8933108317492167]
Training diffusion models on private data and disseminating the models and weights rather than the raw dataset paves the way for innovative large-scale data-sharing strategies.
This paper introduces a method for estimating the upper bound of the probability of reproducing identifiable training images during the sampling process.
Our results show that privacy-breaching images are reproduced at sampling time if the models were trained without care.
arXiv Detail & Related papers (2023-06-02T08:37:38Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - MOVE: Effective and Harmless Ownership Verification via Embedded
External Features [109.19238806106426]
We propose an effective and harmless model ownership verification (MOVE) to defend against different types of model stealing simultaneously.
We conduct the ownership verification by verifying whether a suspicious model contains the knowledge of defender-specified external features.
In particular, we develop our MOVE method under both white-box and black-box settings to provide comprehensive model protection.
arXiv Detail & Related papers (2022-08-04T02:22:29Z) - Defending against Model Stealing via Verifying Embedded External
Features [90.29429679125508]
adversaries can steal' deployed models even when they have no training samples and can not get access to the model parameters or structures.
We explore the defense from another angle by verifying whether a suspicious model contains the knowledge of defender-specified emphexternal features.
Our method is effective in detecting different types of model stealing simultaneously, even if the stolen model is obtained via a multi-stage stealing process.
arXiv Detail & Related papers (2021-12-07T03:51:54Z) - Dataset Inference: Ownership Resolution in Machine Learning [18.248121977353506]
knowledge contained in stolen model's training set is what is common to all stolen copies.
We introduce $dataset$ $inference, the process of identifying whether a suspected model copy has private knowledge from the original model's dataset.
Experiments on CIFAR10, SVHN, CIFAR100 and ImageNet show that model owners can claim with confidence greater than 99% that their model (or dataset as a matter of fact) was stolen.
arXiv Detail & Related papers (2021-04-21T18:12:18Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.