Unimotion: Unifying 3D Human Motion Synthesis and Understanding
- URL: http://arxiv.org/abs/2409.15904v2
- Date: Mon, 30 Sep 2024 10:39:38 GMT
- Title: Unimotion: Unifying 3D Human Motion Synthesis and Understanding
- Authors: Chuqiao Li, Julian Chibane, Yannan He, Naama Pearl, Andreas Geiger, Gerard Pons-moll,
- Abstract summary: We introduce Unimotion, the first unified multi-task human motion model capable of both flexible motion control and frame-level motion understanding.
Unimotion allows to control motion with global text, or local frame-level text, or both at once, providing more flexible control for users.
- Score: 47.18338511861108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Unimotion, the first unified multi-task human motion model capable of both flexible motion control and frame-level motion understanding. While existing works control avatar motion with global text conditioning, or with fine-grained per frame scripts, none can do both at once. In addition, none of the existing works can output frame-level text paired with the generated poses. In contrast, Unimotion allows to control motion with global text, or local frame-level text, or both at once, providing more flexible control for users. Importantly, Unimotion is the first model which by design outputs local text paired with the generated poses, allowing users to know what motion happens and when, which is necessary for a wide range of applications. We show Unimotion opens up new applications: 1.) Hierarchical control, allowing users to specify motion at different levels of detail, 2.) Obtaining motion text descriptions for existing MoCap data or YouTube videos 3.) Allowing for editability, generating motion from text, and editing the motion via text edits. Moreover, Unimotion attains state-of-the-art results for the frame-level text-to-motion task on the established HumanML3D dataset. The pre-trained model and code are available available on our project page at https://coral79.github.io/uni-motion/.
Related papers
- MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding [76.30210465222218]
MotionGPT-2 is a unified Large Motion-Language Model (LMLMLM)
It supports multimodal control conditions through pre-trained Large Language Models (LLMs)
It is highly adaptable to the challenging 3D holistic motion generation task.
arXiv Detail & Related papers (2024-10-29T05:25:34Z) - MotionFix: Text-Driven 3D Human Motion Editing [52.11745508960547]
Key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion.
We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text.
Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input.
arXiv Detail & Related papers (2024-08-01T16:58:50Z) - Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion [9.134743677331517]
We propose a pre-trained image-to-video model to disentangle appearance from motion.
Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input.
By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity.
Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks.
arXiv Detail & Related papers (2024-08-01T10:55:20Z) - CoMo: Controllable Motion Generation through Language Guided Pose Code Editing [57.882299081820626]
We introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions.
CoMo decomposes motions into discrete and semantically meaningful pose codes.
It autoregressively generates sequences of pose codes, which are then decoded into 3D motions.
arXiv Detail & Related papers (2024-03-20T18:11:10Z) - LivePhoto: Real Image Animation with Text-guided Motion Control [51.31418077586208]
This work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions.
We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input.
We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions.
arXiv Detail & Related papers (2023-12-05T17:59:52Z) - Story-to-Motion: Synthesizing Infinite and Controllable Character
Animation from Long Text [14.473103773197838]
A new task, Story-to-Motion, arises when characters are required to perform specific motions based on a long text description.
Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive.
We propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text.
arXiv Detail & Related papers (2023-11-13T16:22:38Z) - FLAME: Free-form Language-based Motion Synthesis & Editing [17.70085940884357]
We propose a diffusion-based motion synthesis and editing model named FLAME.
FLAME can generate high-fidelity motions well aligned with the given text.
It can edit the parts of the motion, both frame-wise and joint-wise, without any fine-tuning.
arXiv Detail & Related papers (2022-09-01T10:34:57Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - TEMOS: Generating diverse human motions from textual descriptions [53.85978336198444]
We address the problem of generating diverse 3D human motions from textual descriptions.
We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data.
We show that TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions.
arXiv Detail & Related papers (2022-04-25T14:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.