Bridging Speech and Text: Enhancing ASR with Pinyin-to-Character Pre-training in LLMs
- URL: http://arxiv.org/abs/2409.16005v1
- Date: Tue, 24 Sep 2024 12:06:31 GMT
- Title: Bridging Speech and Text: Enhancing ASR with Pinyin-to-Character Pre-training in LLMs
- Authors: Yang Yuhang, Peng Yizhou, Eng Siong Chng, Xionghu Zhong,
- Abstract summary: We propose pre-training large language models (LLMs) on Pinyin embedding sequences to generate corresponding Chinese characters.
This step enables the LLM to adapt to generating text from pronunciation features before encountering real speech data.
In AISHELL-1 corpus, our approach yields a 9.5% relative improvement in ASR tasks compared to the baseline.
- Score: 20.97172337899685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of large language models (LLMs) with pre-trained speech models has opened up new avenues in automatic speech recognition (ASR). While LLMs excel in multimodal understanding tasks, effectively leveraging their capabilities for ASR remains a significant challenge. This paper presents a novel training approach to enhance LLM performance in ASR tasks. We propose pre-training LLMs on Pinyin embedding sequences, which represent pronunciation features, to generate corresponding Chinese characters. This step enables the LLM to adapt to generating text from pronunciation features before encountering real speech data. Furthermore, we fine-tune the LoRA parameters to enhance the LLM's understanding of speech modality information. In AISHELL-1 corpus, our approach yields a 9.5% relative improvement in ASR tasks compared to the baseline without Pinyi-to-Character pre-training. Additionally, incorporating auxiliary text data for Pinyi-to-Character pre-training further boosts performance, achieving a 19.0% relative improvement.
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Large Language Models Are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.
We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.
We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.81% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - LA-RAG:Enhancing LLM-based ASR Accuracy with Retrieval-Augmented Generation [15.520180125182756]
Recent advancements in integrating speech information into large language models (LLMs) have significantly improved automatic speech recognition (ASR) accuracy.
Existing methods often constrained by the capabilities of the speech encoders under varied acoustic conditions, such as accents.
We propose LA-RAG, a novel Retrieval-Augmented Generation (RAG) paradigm for LLM-based ASR.
arXiv Detail & Related papers (2024-09-13T07:28:47Z) - An End-to-End Speech Summarization Using Large Language Model [7.562198375754054]
Speech Summarization (SSum) aims to generate human-like text summaries from spoken content.
Research on large language models (LLMs) and multimodal information fusion has provided new insights.
We propose an end-to-end SSum model that utilizes Q-Former as a connector for the audio-text modality.
arXiv Detail & Related papers (2024-07-02T07:22:57Z) - Blending LLMs into Cascaded Speech Translation: KIT's Offline Speech Translation System for IWSLT 2024 [61.189875635090225]
Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST)
arXiv Detail & Related papers (2024-06-24T16:38:17Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
We introduce a method that utilizes the ASR system's lattice output instead of relying solely on the top hypothesis.
Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM's resilience to noisy speech transcripts.
arXiv Detail & Related papers (2024-01-05T17:58:10Z) - End-to-End Speech Recognition Contextualization with Large Language
Models [25.198480789044346]
We introduce a novel method for contextualizing speech recognition models incorporating Large Language Models (LLMs)
We provide audio features, along with optional text tokens for context, to train the system to complete transcriptions in a decoder-only fashion.
Our empirical results demonstrate a significant improvement in performance, with a 6% WER reduction when additional textual context is provided.
arXiv Detail & Related papers (2023-09-19T20:28:57Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
This paper explores the integration of Large Language Models (LLMs) into Automatic Speech Recognition (ASR) systems.
Our primary focus is to investigate the potential of using an LLM's in-context learning capabilities to enhance the performance of ASR systems.
arXiv Detail & Related papers (2023-07-13T02:31:55Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
We propose a novel NLP task called ASR post-processing for readability (APR)
APR aims to transform the noisy ASR output into a readable text for humans and downstream tasks while maintaining the semantic meaning of the speaker.
We compare fine-tuned models based on several open-sourced and adapted pre-trained models with the traditional pipeline method.
arXiv Detail & Related papers (2020-04-09T09:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.