Transformer based time series prediction of the maximum power point for solar photovoltaic cells
- URL: http://arxiv.org/abs/2409.16342v1
- Date: Tue, 24 Sep 2024 17:26:55 GMT
- Title: Transformer based time series prediction of the maximum power point for solar photovoltaic cells
- Authors: Palaash Agrawal, Hari Om Bansal, Aditya R. Gautam, Om Prakash Mahela, Baseem Khan,
- Abstract summary: This paper proposes an improved deep learning based maximum power point tracking (MPPT) in solar photovoltaic cells.
In this article, the ambient conditions of a location are represented through a comprehensive set of environmental features.
The proposed model performs power point tracking in a robust, dynamic, and nonlatent manner, over a wide range of atmospheric conditions.
- Score: 0.24233709516962787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an improved deep learning based maximum power point tracking (MPPT) in solar photovoltaic cells considering various time series based environmental inputs. Generally, artificial neural network based MPPT algorithms use basic neural network architectures and inputs which do not represent the ambient conditions in a comprehensive manner. In this article, the ambient conditions of a location are represented through a comprehensive set of environmental features. Furthermore, the inclusion of time based features in the input data is considered to model cyclic patterns temporally within the atmospheric conditions leading to robust modeling of the MPPT algorithm. A transformer based deep learning architecture is trained as a time series prediction model using multidimensional time series input features. The model is trained on a dataset containing typical meteorological year data points of ambient weather conditions from 50 locations. The attention mechanism in the transformer modules allows the model to learn temporal patterns in the data efficiently. The proposed model achieves a 0.47% mean average percentage error of prediction on non zero operating voltage points in a test dataset consisting of data collected over a period of 200 consecutive hours resulting in the average power efficiency of 99.54% and peak power efficiency of 99.98%. The proposed model is validated through real time simulations. The proposed model performs power point tracking in a robust, dynamic, and nonlatent manner, over a wide range of atmospheric conditions.
Related papers
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - A Robust Data-driven Process Modeling Applied to Time-series Stochastic
Power Flow [2.7356119162292654]
The proposed model is trained on recorded time-series data of voltage phasors and power injections to perform a time-series power flow calculation.
Our simulation results show that the proposed robust model can handle up to 25% of outliers in the training data set.
arXiv Detail & Related papers (2023-01-06T18:55:44Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - A Novel Transformer Network with Shifted Window Cross-Attention for
Spatiotemporal Weather Forecasting [5.414308305392762]
We tackle the challenge of weather forecasting using a video transformer network.
Vision transformer architectures have been explored in various applications.
We propose the use of Video Swin-Transformer, coupled with a dedicated augmentation scheme.
arXiv Detail & Related papers (2022-08-02T05:04:53Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Synthetic Photovoltaic and Wind Power Forecasting Data [5.039779583329608]
This paper provides an openly accessible time series dataset with realistic synthetic power data.
Other publicly and non-publicly available datasets often lack precise geographic coordinates, timestamps, or static power plant information.
The dataset comprises 120 photovoltaic and 273 wind power plants with distinct sides all over Germany from 500 days in hourly resolution.
arXiv Detail & Related papers (2022-04-01T13:20:05Z) - Spatio-temporal graph neural networks for multi-site PV power
forecasting [0.0]
We present two novel graph neural network models for deterministic multi-site forecasting.
The proposed models outperform state-of-the-art multi-site forecasting methods for prediction horizons of six hours ahead.
arXiv Detail & Related papers (2021-07-29T10:15:01Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Data-driven Full-waveform Inversion Surrogate using Conditional
Generative Adversarial Networks [0.0]
Full-waveform inversion (FWI) velocity modeling is an iterative advanced technique that provides an accurate and detailed velocity field model.
In this study, we propose a method of generating velocity field models, as detailed as those obtained through FWI, using a conditional generative adversarial network (cGAN) with multiple inputs.
arXiv Detail & Related papers (2021-04-30T21:41:24Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.