CasFT: Future Trend Modeling for Information Popularity Prediction with Dynamic Cues-Driven Diffusion Models
- URL: http://arxiv.org/abs/2409.16619v1
- Date: Wed, 25 Sep 2024 05:03:16 GMT
- Title: CasFT: Future Trend Modeling for Information Popularity Prediction with Dynamic Cues-Driven Diffusion Models
- Authors: Xin Jing, Yichen Jing, Yuhuan Lu, Bangchao Deng, Xueqin Chen, Dingqi Yang,
- Abstract summary: We propose CasFT, which leverages observed information neurals and dynamic cues extracted via ODEs to guide the generation of Future-increasing Trends.
Experiments conducted on three real-world datasets demonstrate that CasFT improves the prediction accuracy, compared to state-of-the-art approaches.
- Score: 5.302417649818668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid spread of diverse information on online social platforms has prompted both academia and industry to realize the importance of predicting content popularity, which could benefit a wide range of applications, such as recommendation systems and strategic decision-making. Recent works mainly focused on extracting spatiotemporal patterns inherent in the information diffusion process within a given observation period so as to predict its popularity over a future period of time. However, these works often overlook the future popularity trend, as future popularity could either increase exponentially or stagnate, introducing uncertainties to the prediction performance. Additionally, how to transfer the preceding-term dynamics learned from the observed diffusion process into future-term trends remains an unexplored challenge. Against this background, we propose CasFT, which leverages observed information Cascades and dynamic cues extracted via neural ODEs as conditions to guide the generation of Future popularity-increasing Trends through a diffusion model. These generated trends are then combined with the spatiotemporal patterns in the observed information cascade to make the final popularity prediction. Extensive experiments conducted on three real-world datasets demonstrate that CasFT significantly improves the prediction accuracy, compared to state-of-the-art approaches, yielding 2.2%-19.3% improvement across different datasets.
Related papers
- Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - On Your Mark, Get Set, Predict! Modeling Continuous-Time Dynamics of Cascades for Information Popularity Prediction [5.464598715181046]
Key to accurately predicting information popularity lies in subtly modeling the underlying temporal information diffusion process.
We propose ConCat, modeling the Continuous-time dynamics of Cascades for information popularity prediction.
We conduct extensive experiments to evaluate ConCat on three real-world datasets.
arXiv Detail & Related papers (2024-09-25T05:08:44Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
We propose a novel Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step.
The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data.
arXiv Detail & Related papers (2024-06-05T00:13:38Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Leveraging Multiple Relations for Fashion Trend Forecasting Based on
Social Media [72.06420633156479]
We propose an improved model named Relation Enhanced Attention Recurrent (REAR) network.
Compared to KERN, the REAR model leverages not only the relations among fashion elements but also those among user groups.
To further improve the performance of long-range trend forecasting, the REAR method devises a sliding temporal attention mechanism.
arXiv Detail & Related papers (2021-05-07T14:52:03Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.