Progressive Representation Learning for Real-Time UAV Tracking
- URL: http://arxiv.org/abs/2409.16652v1
- Date: Wed, 25 Sep 2024 06:16:32 GMT
- Title: Progressive Representation Learning for Real-Time UAV Tracking
- Authors: Changhong Fu, Xiang Lei, Haobo Zuo, Liangliang Yao, Guangze Zheng, Jia Pan,
- Abstract summary: This work proposes a novel progressive representation learning framework for UAV tracking, i.e., PRL-Track.
For coarse representation learning, two innovative regulators, which rely on appearance and semantic information, are designed to mitigate appearance interference and capture semantic information.
For fine representation learning, a new hierarchical modeling generator is developed to intertwine coarse object representations.
- Score: 20.76053366492599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual object tracking has significantly promoted autonomous applications for unmanned aerial vehicles (UAVs). However, learning robust object representations for UAV tracking is especially challenging in complex dynamic environments, when confronted with aspect ratio change and occlusion. These challenges severely alter the original information of the object. To handle the above issues, this work proposes a novel progressive representation learning framework for UAV tracking, i.e., PRL-Track. Specifically, PRL-Track is divided into coarse representation learning and fine representation learning. For coarse representation learning, two innovative regulators, which rely on appearance and semantic information, are designed to mitigate appearance interference and capture semantic information. Furthermore, for fine representation learning, a new hierarchical modeling generator is developed to intertwine coarse object representations. Exhaustive experiments demonstrate that the proposed PRL-Track delivers exceptional performance on three authoritative UAV tracking benchmarks. Real-world tests indicate that the proposed PRL-Track realizes superior tracking performance with 42.6 frames per second on the typical UAV platform equipped with an edge smart camera. The code, model, and demo videos are available at \url{https://github.com/vision4robotics/PRL-Track}.
Related papers
- VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT)
Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens.
We propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint.
arXiv Detail & Related papers (2024-10-11T05:01:49Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
Single-stream architectures utilizing pre-trained ViT backbones offer improved performance, efficiency, and robustness.
We boost the efficiency of this framework by tailoring it into an adaptive framework that dynamically exits Transformer blocks for real-time UAV tracking.
We also improve the effectiveness of ViTs in handling motion blur, a common issue in UAV tracking caused by the fast movements of either the UAV, the tracked objects, or both.
arXiv Detail & Related papers (2024-07-07T14:10:04Z) - Divert More Attention to Vision-Language Object Tracking [87.31882921111048]
We argue that the lack of large-scale vision-language annotated videos and ineffective vision-language interaction learning motivate us to design more effective vision-language representation for tracking.
Particularly, in this paper, we first propose a general attribute annotation strategy to decorate videos in six popular tracking benchmarks, which contributes a large-scale vision-language tracking database with more than 23,000 videos.
We then introduce a novel framework to improve tracking by learning a unified-adaptive VL representation, where the cores are the proposed asymmetric architecture search and modality mixer (ModaMixer)
arXiv Detail & Related papers (2023-07-19T15:22:06Z) - OVTrack: Open-Vocabulary Multiple Object Tracking [64.73379741435255]
OVTrack is an open-vocabulary tracker capable of tracking arbitrary object classes.
It sets a new state-of-the-art on the large-scale, large-vocabulary TAO benchmark.
arXiv Detail & Related papers (2023-04-17T16:20:05Z) - SGDViT: Saliency-Guided Dynamic Vision Transformer for UAV Tracking [12.447854608181833]
This work presents a novel saliency-guided dynamic vision Transformer (SGDViT) for UAV tracking.
The proposed method designs a new task-specific object saliency mining network to refine the cross-correlation operation.
A lightweight saliency filtering Transformer further refines saliency information and increases the focus on appearance information.
arXiv Detail & Related papers (2023-03-08T05:01:00Z) - AttTrack: Online Deep Attention Transfer for Multi-object Tracking [4.5116674432168615]
Multi-object tracking (MOT) is a vital component of intelligent video analytics applications such as surveillance and autonomous driving.
In this paper, we aim to accelerate MOT by transferring the knowledge from high-level features of a complex network (teacher) to a lightweight network (student) at both training and inference times.
The proposed AttTrack framework has three key components: 1) cross-model feature learning to align intermediate representations from the teacher and student models, 2) interleaving the execution of the two models at inference time, and 3) incorporating the updated predictions from the teacher model as prior knowledge to assist the student model
arXiv Detail & Related papers (2022-10-16T22:15:31Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTS is an unsupervised SSL framework for selecting clips containing the same object.
PreViTS spatially constrains the frame regions to learn from and trains the model to locate meaningful objects.
We train a momentum contrastive (MoCo) encoder on VGG-Sound and Kinetics-400 datasets with PreViTS.
arXiv Detail & Related papers (2021-12-01T19:49:57Z) - Crop-Transform-Paste: Self-Supervised Learning for Visual Tracking [137.26381337333552]
In this work, we develop the Crop-Transform-Paste operation, which is able to synthesize sufficient training data.
Since the object state is known in all synthesized data, existing deep trackers can be trained in routine ways without human annotation.
arXiv Detail & Related papers (2021-06-21T07:40:34Z) - TRAT: Tracking by Attention Using Spatio-Temporal Features [14.520067060603209]
We propose a two-stream deep neural network tracker that uses both spatial and temporal features.
Our architecture is developed over ATOM tracker and contains two backbones: (i) 2D-CNN network to capture appearance features and (ii) 3D-CNN network to capture motion features.
arXiv Detail & Related papers (2020-11-18T20:11:12Z) - Robust Visual Object Tracking with Two-Stream Residual Convolutional
Networks [62.836429958476735]
We propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking.
Our TS-RCN can be integrated with existing deep learning based visual trackers.
To further improve the tracking performance, we adopt a "wider" residual network ResNeXt as its feature extraction backbone.
arXiv Detail & Related papers (2020-05-13T19:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.