EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2409.16723v2
- Date: Thu, 26 Sep 2024 08:28:48 GMT
- Title: EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models
- Authors: Jiacheng Zhang, Yang Jiao, Shaoxiang Chen, Jingjing Chen, Yu-Gang Jiang,
- Abstract summary: We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
- Score: 80.00303150568696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Multimodal Large Language Models (MLLMs) have sparked great research interests owing to their exceptional content-reasoning and instruction-following capabilities. To effectively instruct an MLLM, in addition to conventional language expressions, the practice of referring to objects by painting with brushes on images has emerged as a prevalent tool (referred to as "referring visual prompts") due to its efficacy in aligning the user's intention with specific image regions. To accommodate the most common referring visual prompts, namely points, boxes, and masks, existing approaches initially utilize specialized feature encoding modules to capture the semantics of the highlighted areas indicated by these prompts. Subsequently, these encoded region features are adapted to MLLMs through fine-tuning on a meticulously curated multimodal instruction dataset. However, such designs suffer from redundancy in architecture. Moreover, they face challenges in effectively generalizing when encountering a diverse range of arbitrary referring visual prompts in real-life scenarios. To address the above issues, we propose EAGLE, a novel MLLM that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches. Specifically, our EAGLE maintains the innate format of the referring visual prompts as colored patches rendered on the given image for conducting the instruction tuning. Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM, with the semantic comprehension of these regions originating from the MLLM itself. Besides, we also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts. Extensive experiments are conducted to prove the effectiveness of our proposed method.
Related papers
- Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities.
Visual prompting has emerged for more fine-grained and free-form visual instructions.
This paper focuses on visual prompting, prompt generation, compositional reasoning, and prompt learning.
arXiv Detail & Related papers (2024-09-05T08:47:34Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs)
We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them.
We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
We investigate the effectiveness of different vision encoders within Large Language Models (MLLMs)
Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding.
We propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging.
arXiv Detail & Related papers (2023-10-13T02:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.