Offline and Distributional Reinforcement Learning for Radio Resource Management
- URL: http://arxiv.org/abs/2409.16764v2
- Date: Thu, 23 Jan 2025 12:00:38 GMT
- Title: Offline and Distributional Reinforcement Learning for Radio Resource Management
- Authors: Eslam Eldeeb, Hirley Alves,
- Abstract summary: Reinforcement learning (RL) has proved to have a promising role in future intelligent wireless networks.
Online RL has been adopted for radio resource management (RRM), taking over traditional schemes.
We propose an offline and distributional RL scheme for the RRM problem.
- Score: 5.771885923067511
- License:
- Abstract: Reinforcement learning (RL) has proved to have a promising role in future intelligent wireless networks. Online RL has been adopted for radio resource management (RRM), taking over traditional schemes. However, due to its reliance on online interaction with the environment, its role becomes limited in practical, real-world problems where online interaction is not feasible. In addition, traditional RL stands short in front of the uncertainties and risks in real-world stochastic environments. In this manner, we propose an offline and distributional RL scheme for the RRM problem, enabling offline training using a static dataset without any interaction with the environment and considering the sources of uncertainties using the distributions of the return. Simulation results demonstrate that the proposed scheme outperforms conventional resource management models. In addition, it is the only scheme that surpasses online RL with a 10 % gain over online RL.
Related papers
- Unsupervised-to-Online Reinforcement Learning [59.910638327123394]
Unsupervised-to-online RL (U2O RL) replaces domain-specific supervised offline RL with unsupervised offline RL.
U2O RL not only enables reusing a single pre-trained model for multiple downstream tasks, but also learns better representations.
We empirically demonstrate that U2O RL achieves strong performance that matches or even outperforms previous offline-to-online RL approaches.
arXiv Detail & Related papers (2024-08-27T05:23:45Z) - Conservative and Risk-Aware Offline Multi-Agent Reinforcement Learning [33.48496141312585]
Reinforcement learning (RL) has been widely adopted for controlling and optimizing complex engineering systems such as next-generation wireless networks.
An important challenge in adopting RL is the need for direct access to the physical environment.
We propose an offline MARL scheme that integrates distributional RL and conservative Q-learning to address the environment's inherent aleatoric uncertainty.
arXiv Detail & Related papers (2024-02-13T12:49:22Z) - Advancing RAN Slicing with Offline Reinforcement Learning [15.259182716723496]
This paper introduces offlineReinforcement Learning to solve the RAN slicing problem.
We show how offline RL can effectively learn near-optimal policies from sub-optimal datasets.
We also present empirical evidence of the efficacy of offline RL in adapting to various service-level requirements.
arXiv Detail & Related papers (2023-12-16T22:09:50Z) - Offline Reinforcement Learning for Wireless Network Optimization with
Mixture Datasets [13.22086908661673]
Reinforcement learning (RL) has boosted the adoption of online RL for wireless radio resource management (RRM)
Online RL algorithms require direct interactions with the environment.
offline RL can produce a near-optimal RL policy even when all involved behavior policies are highly suboptimal.
arXiv Detail & Related papers (2023-11-19T21:02:17Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - A State-Augmented Approach for Learning Optimal Resource Management
Decisions in Wireless Networks [58.720142291102135]
We consider a radio resource management (RRM) problem in a multi-user wireless network.
The goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users.
We propose a state-augmented parameterization for the RRM policy, where alongside the instantaneous network states, the RRM policy takes as input the set of dual variables corresponding to the constraints.
arXiv Detail & Related papers (2022-10-28T21:24:13Z) - Regularizing a Model-based Policy Stationary Distribution to Stabilize
Offline Reinforcement Learning [62.19209005400561]
offline reinforcement learning (RL) extends the paradigm of classical RL algorithms to purely learning from static datasets.
A key challenge of offline RL is the instability of policy training, caused by the mismatch between the distribution of the offline data and the undiscounted stationary state-action distribution of the learned policy.
We regularize the undiscounted stationary distribution of the current policy towards the offline data during the policy optimization process.
arXiv Detail & Related papers (2022-06-14T20:56:16Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.