Towards Underwater Camouflaged Object Tracking: An Experimental Evaluation of SAM and SAM 2
- URL: http://arxiv.org/abs/2409.16902v1
- Date: Wed, 25 Sep 2024 13:10:03 GMT
- Title: Towards Underwater Camouflaged Object Tracking: An Experimental Evaluation of SAM and SAM 2
- Authors: Chunhui Zhang, Li Liu, Guanjie Huang, Hao Wen, Xi Zhou, Yanfeng Wang,
- Abstract summary: We propose the first large-scale underwater camouflaged object tracking dataset, namely UW-COT.
This paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation.
- Score: 41.627959017482155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale training datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To address this issue, we take a step forward by proposing the first large-scale underwater camouflaged object tracking dataset, namely UW-COT. Based on the proposed dataset, this paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation. Specifically, we compare the performance of the Segment Anything Model (SAM) and its updated version, SAM 2, in challenging underwater environments. Our findings highlight the improvements in SAM 2 over SAM, demonstrating its enhanced capability to handle the complexities of underwater camouflaged objects. Compared to current advanced visual object tracking methods, the latest video segmentation foundation model SAM 2 also exhibits significant advantages, providing valuable insights into the development of more effective tracking technologies for underwater scenarios. The dataset will be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
Related papers
- When SAM2 Meets Video Camouflaged Object Segmentation: A Comprehensive Evaluation and Adaptation [36.174458990817165]
This study investigates the application and performance of the Segment Anything Model 2 (SAM2) in the challenging task of video camouflaged object segmentation (VCOS)
VCOS involves detecting objects that blend seamlessly in the surroundings for videos, due to similar colors and textures, poor light conditions, etc.
arXiv Detail & Related papers (2024-09-27T11:35:50Z) - Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track [28.52754012142431]
Segment Anything Model 2 (SAM 2) is a foundation model towards solving promptable visual segmentation in images and videos.
SAM 2 builds a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date.
Without fine-tuning on the training set, SAM 2 achieved 75.79 J&F on the test set and ranked 4th place for 6th LSVOS Challenge VOS Track.
arXiv Detail & Related papers (2024-08-19T16:13:14Z) - Evaluation of Segment Anything Model 2: The Role of SAM2 in the Underwater Environment [2.0554501265326794]
The Segment Anything Model (SAM) and its extensions have been attempted for applications in various underwater visualization tasks in marine sciences.
Recently, Meta has developed the Segment Anything Model 2 (SAM2), which significantly improves running speed and segmentation accuracy.
This report aims to explore the potential of SAM2 in marine science by evaluating it on the underwater instance segmentation datasets benchmark UIIS and USIS10K.
arXiv Detail & Related papers (2024-08-06T03:20:10Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Moving Object Segmentation: All You Need Is SAM (and Flow) [82.78026782967959]
We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects.
In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt.
These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks.
arXiv Detail & Related papers (2024-04-18T17:59:53Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisT is a benchmark for visual tracking in diverse scenarios with adverse visibility.
AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios.
We benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes.
arXiv Detail & Related papers (2022-08-14T17:49:37Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.