Face Forgery Detection with Elaborate Backbone
- URL: http://arxiv.org/abs/2409.16945v1
- Date: Wed, 25 Sep 2024 13:57:16 GMT
- Title: Face Forgery Detection with Elaborate Backbone
- Authors: Zonghui Guo, Yingjie Liu, Jie Zhang, Haiyong Zheng, Shiguang Shan,
- Abstract summary: Face Forgery Detection aims to determine whether a digital face is real or fake.
Previous FFD models directly employ existing backbones to represent and extract forgery cues.
We propose leveraging the ViT network with self-supervised learning on real-face datasets to pre-train a backbone.
We then build a competitive backbone fine-tuning framework that strengthens the backbone's ability to extract diverse forgery cues.
- Score: 50.914676786151574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face Forgery Detection (FFD), or Deepfake detection, aims to determine whether a digital face is real or fake. Due to different face synthesis algorithms with diverse forgery patterns, FFD models often overfit specific patterns in training datasets, resulting in poor generalization to other unseen forgeries. This severe challenge requires FFD models to possess strong capabilities in representing complex facial features and extracting subtle forgery cues. Although previous FFD models directly employ existing backbones to represent and extract facial forgery cues, the critical role of backbones is often overlooked, particularly as their knowledge and capabilities are insufficient to address FFD challenges, inevitably limiting generalization. Therefore, it is essential to integrate the backbone pre-training configurations and seek practical solutions by revisiting the complete FFD workflow, from backbone pre-training and fine-tuning to inference of discriminant results. Specifically, we analyze the crucial contributions of backbones with different configurations in FFD task and propose leveraging the ViT network with self-supervised learning on real-face datasets to pre-train a backbone, equipping it with superior facial representation capabilities. We then build a competitive backbone fine-tuning framework that strengthens the backbone's ability to extract diverse forgery cues within a competitive learning mechanism. Moreover, we devise a threshold optimization mechanism that utilizes prediction confidence to improve the inference reliability. Comprehensive experiments demonstrate that our FFD model with the elaborate backbone achieves excellent performance in FFD and extra face-related tasks, i.e., presentation attack detection. Code and models are available at https://github.com/zhenglab/FFDBackbone.
Related papers
- Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
We proposed a novel self-supervision and supervision combining transformer-based person re-identification framework, namely SSSC-TransReID.
We designed a self-supervised contrastive learning branch, which can enhance the feature representation for person re-identification without negative samples or additional pre-training.
Our proposed model obtains superior Re-ID performance consistently and outperforms the state-of-the-art ReID methods by large margins on the mean average accuracy (mAP) and Rank-1 accuracy.
arXiv Detail & Related papers (2024-10-21T03:17:25Z) - MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion [14.907473847787541]
We propose Masked Diffusion Conditional (MacDiff) as a unified framework for human skeleton modeling.
For the first time, we leverage diffusion models as effective skeleton representation learners.
MacDiff achieves state-of-the-art performance on representation learning benchmarks while maintaining the competence for generative tasks.
arXiv Detail & Related papers (2024-09-16T17:06:10Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - BFRFormer: Transformer-based generator for Real-World Blind Face
Restoration [37.77996097891398]
We propose a Transformer-based blind face restoration method, named BFRFormer, to reconstruct images with more identity-preserved details in an end-to-end manner.
Our method outperforms state-of-the-art methods on a synthetic dataset and four real-world datasets.
arXiv Detail & Related papers (2024-02-29T02:31:54Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.