DALDA: Data Augmentation Leveraging Diffusion Model and LLM with Adaptive Guidance Scaling
- URL: http://arxiv.org/abs/2409.16949v1
- Date: Wed, 25 Sep 2024 14:02:43 GMT
- Title: DALDA: Data Augmentation Leveraging Diffusion Model and LLM with Adaptive Guidance Scaling
- Authors: Kyuheon Jung, Yongdeuk Seo, Seongwoo Cho, Jaeyoung Kim, Hyun-seok Min, Sungchul Choi,
- Abstract summary: We present an effective data augmentation framework leveraging the Large Language Model (LLM) and Diffusion Model (DM)
Our approach addresses the issue of increasing the diversity of synthetic images.
Our method produces synthetic images with enhanced diversity while maintaining adherence to the target distribution.
- Score: 6.7206291284535125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an effective data augmentation framework leveraging the Large Language Model (LLM) and Diffusion Model (DM) to tackle the challenges inherent in data-scarce scenarios. Recently, DMs have opened up the possibility of generating synthetic images to complement a few training images. However, increasing the diversity of synthetic images also raises the risk of generating samples outside the target distribution. Our approach addresses this issue by embedding novel semantic information into text prompts via LLM and utilizing real images as visual prompts, thus generating semantically rich images. To ensure that the generated images remain within the target distribution, we dynamically adjust the guidance weight based on each image's CLIPScore to control the diversity. Experimental results show that our method produces synthetic images with enhanced diversity while maintaining adherence to the target distribution. Consequently, our approach proves to be more efficient in the few-shot setting on several benchmarks. Our code is available at https://github.com/kkyuhun94/dalda .
Related papers
- Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - MM-Diff: High-Fidelity Image Personalization via Multi-Modal Condition Integration [7.087475633143941]
MM-Diff is a tuning-free image personalization framework capable of generating high-fidelity images of both single and multiple subjects in seconds.
MM-Diff employs a vision encoder to transform the input image into CLS and patch embeddings.
CLS embeddings are used on the one hand to augment the text embeddings, and on the other hand together with patch embeddings to derive a small number of detail-rich subject embeddings.
arXiv Detail & Related papers (2024-03-22T09:32:31Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Improving Denoising Diffusion Probabilistic Models via Exploiting Shared
Representations [5.517338199249029]
SR-DDPM is a class of generative models that produce high-quality images by reversing a noisy diffusion process.
By exploiting the similarity between diverse data distributions, our method can scale to multiple tasks without compromising the image quality.
We evaluate our method on standard image datasets and show that it outperforms both unconditional and conditional DDPM in terms of FID and SSIM metrics.
arXiv Detail & Related papers (2023-11-27T22:30:26Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain.
With only a single representative text feature instead of real images, the synthesized images gradually lose diversity.
We propose a novel method to find semantic variations of the target text in the CLIP space.
arXiv Detail & Related papers (2023-08-21T08:12:28Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Multimodal Image-to-Image Translation via Mutual Information Estimation
and Maximization [16.54980086211836]
Multimodal image-to-image translation (I2IT) aims to learn a conditional distribution that explores multiple possible images in the target domain given an input image in the source domain.
Conditional generative adversarial networks (cGANs) are often adopted for modeling such a conditional distribution.
We propose a method that explicitly estimates and maximizes the mutual information between the latent code and the output image in cGANs.
arXiv Detail & Related papers (2020-08-08T14:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.