Non-asymptotic convergence analysis of the stochastic gradient
Hamiltonian Monte Carlo algorithm with discontinuous stochastic gradient with
applications to training of ReLU neural networks
- URL: http://arxiv.org/abs/2409.17107v1
- Date: Wed, 25 Sep 2024 17:21:09 GMT
- Title: Non-asymptotic convergence analysis of the stochastic gradient
Hamiltonian Monte Carlo algorithm with discontinuous stochastic gradient with
applications to training of ReLU neural networks
- Authors: Luxu Liang, Ariel Neufeld, Ying Zhang
- Abstract summary: We provide a non-asymptotic analysis of the convergence of the gradient Hamiltonian Monte Carlo to a target measure in Wasserstein-1 and Wasserstein-2 distance.
To illustrate our main results, we consider numerical experiments on quantile estimation and on several problems involving ReLU neural networks relevant in finance and artificial intelligence.
- Score: 8.058385158111207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide a non-asymptotic analysis of the convergence of the
stochastic gradient Hamiltonian Monte Carlo (SGHMC) algorithm to a target
measure in Wasserstein-1 and Wasserstein-2 distance. Crucially, compared to the
existing literature on SGHMC, we allow its stochastic gradient to be
discontinuous. This allows us to provide explicit upper bounds, which can be
controlled to be arbitrarily small, for the expected excess risk of non-convex
stochastic optimization problems with discontinuous stochastic gradients,
including, among others, the training of neural networks with ReLU activation
function. To illustrate the applicability of our main results, we consider
numerical experiments on quantile estimation and on several optimization
problems involving ReLU neural networks relevant in finance and artificial
intelligence.
Related papers
- Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
implicit gradient descent (IGD) outperforms the common gradient descent (GD) in handling certain multi-scale problems.
We show that IGD converges a globally optimal solution at a linear convergence rate.
arXiv Detail & Related papers (2024-07-03T06:10:41Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
We study the overparametrization bounds required for the global convergence of gradient descent algorithm for a class of one hidden layer feed-forward neural networks.
arXiv Detail & Related papers (2022-01-28T11:30:06Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Non-asymptotic estimates for TUSLA algorithm for non-convex learning
with applications to neural networks with ReLU activation function [3.5044892799305956]
We provide a non-asymptotic analysis for the tamed un-adjusted Langevin algorithm (TUSLA) introduced in Lovas et al.
In particular, we establish non-asymptotic error bounds for the TUSLA algorithm in Wassersteinstein-1-2.
We show that the TUSLA algorithm converges rapidly to the optimal solution.
arXiv Detail & Related papers (2021-07-19T07:13:02Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Taming neural networks with TUSLA: Non-convex learning via adaptive
stochastic gradient Langevin algorithms [0.0]
We offer on an appropriately constructed gradient algorithm based on problematic Lange dynamics (SGLD)
We also provide nonasymptotic analysis of the use of new algorithm's convergence properties.
The roots of the TUSLA algorithm are based on the taming processes with developed coefficients citettamed-euler.
arXiv Detail & Related papers (2020-06-25T16:06:22Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
We show that the averaged gradient descent can achieve the minimax optimal convergence rate.
We show that the target function specified by the NTK of a ReLU network can be learned at the optimal convergence rate.
arXiv Detail & Related papers (2020-06-22T14:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.